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CHAPTER 8

SETS AND RELATIONS

8.1 Sets

Our everyday speech abounds with collective nouns such

as herd, company, swarm, class, litter, collection, bunch, etc.

Examples which use these collective nouns include the following:

a herd of cattle, a company of soldiers, a swarm of bees, a

class of students, a litter of kittens, a collection of stamps,

a bunch of bananas.

It is also possible to find examples which use collective

nouns which may be unfamiliar to you such as the following: a

gam of whales, a pod of seals, a glitter of butterflies, a

singular of boars, a gaggle of geese, a hutch of rabbits, an

army of ants, a murmuration of starlings, a jubilation of sky-

larks, and a pride of lions.

In each of the above examples we see how a word, such as

herd, class, pride, etc., is used to denote a collection of

several objects assembled together and thought of as a unit.

Each of the above collections is well-defined. By this we mean

that we can determine if a given object does or does not belong

to the specific collection being considered.

In mathematics we use the collective noun set to indicate

a well-defined collection. The objects in sets can be literally

anything: numbers, points, lines, people, letters, cities, etc.

These objects in sets are called the elements or members of the

set. Terms such as "set" and "element" are part of the basic

lAS
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language used in the study of all branches of mathematics. In

this chapter, we will concentrate on terms and concepts dealing

with sets and relations between sets.

Here are ten particular examples of sets.

Example 1: The numbers 1,2,3,4,5 and 6.

Example 2: The solutfon set of the open sentence

2 + 5 x in (w, +).

Example 3: The "primary" colors red, yellow and blue.

Example 4: The states in the U.S.A. whose names begin

with the letter "M."

Example 5: The numbers 1,2,3,4,6,8,12, and 24.

Example 6: The states in the U.S.A. for which the names

of both the state and its capital city begin

with the same letter.

Example 7: The numbers -2, -1, 0, 1, and 2.

Example 8: The set of whole numbers which are both even

and odd.

Example 9: The numbers 1, 3 and 5.

Example 10: The outcome set for the tossing of a die.

Notice that the sets in the odd numbered examples above are

defined by actually listing the elements in the set; and the

sets in the even numbered examples are defined by stating

properties which can be used to determine if a particular object

is or is not an element of the set.

Sets will usually be denoted by capital letters,

A, B, X, Y, *so

Recall that we used "W" to denote the set of whole numbers and



"z" to denote the set of integers.

There are essentially two ways to specify a particular set.

One way, if it is possible) is actually to list the elements in

the set. For example,

A = (0, 1, 2, 3)

denotes the set A whose elements are the whole numbers 0, 1, 2,

and 3. Note that the names of the elements are separated by

commas and enclosed in braces (1. The second way to specify a

set is by stating properties which determine or characterize the

elements in the set. For example,

A = (x: x is a whole number and x < 4)

which is read, "A is the set of all x such that x is a whole

number and x is less than 4."

Note: A letter, here "x," is used to denote an arbitrary

element of the set; the colon ":" is read "such

that."

If an object x is an element of a set A, i.e., A contains

x as one of its elements, then we write

x E A.

This can also be read "x is a member of A," or "x is in A," or

"x belongs to A." To indicate that "x is not an element of set

A" we write

x

Thus, for the set A given above we have

0 E A, 1 E A, 2 E A, 3 E A, and 4 0 A.

Let us rewrite the Examples 1-10 given earlier, in order

to illustrate the above remarks and notation. We shall denote



the sets by Al, As,

Example 1':

As,

Al =

As =

Also respectively.

(1, 2, 3, 4, 5, 6)

(X: x E W and x = 2 + 5)Example 2':

Example 31: A3 = (red, yellow, blue)

Example 4': A4 = (X: x is a state in the U.S.A. whose

name begins with the letter "M")

Example 5': As = (1, 2, 3, 4, 6, 8, 12, 24)

Example 6': As = (x: x is a state in the U.S.A. whose

name has the same first letter as the name

of its capital city)

Example 7': A,

A8

=

= (x:

1, 0, 1, 2)

x E W and x is even and x is odd)Example 8':

Example 9': As = (1, 3, 5)

Example 10': A1.0 = (x: x is an outcome of a toss of a die)

Iii Example 10' we could also specify the set Aup by listing the

numbers 1, 2, 3, 4, 5, and 6 as outcomes:

Au) = (1, 2, 3, 4, 5, 6)

In Example 8' notice that the set A8 is in fact the empty set

because there are no whole numbers that are both even and odd.

The empty set is also called the null set. It is customarily

designated by the symbol "0," or by "( )."

8.2 Exercises

1. Find the eight elements in the sat A4. Refer to a map if

necessary.

2. Find the four elements in the set As. Refer to a map if

necessary.,

3. What relationship exists between the sets Al and A10?
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4. What relationship exists between the sets A9 and A1?

5. List the elements in the sets:

(a) A2

(b) A8

6. Specify the following sets by stating a property which

determines or characterizes the elements in the set.

(a) As

(b) A,

(c) A9

7. List four essentially different sets that you have studied

in previous chapters of this book.

8. Find several properties other than the one used in Example

8 which can be used to characterize the null set.

9. Explain why each of the following is true, or is not true.

(a) 7 E Avo

(b) Delaware is an element of set A8.

(c) 0 E As

(d) x %A3

10. State a property that is true of all the sets Al - Au).

8.3 Set Equality and Subsets

Let A = (0, 1, 2, 3)

and B = (1, 0, 3, 2)

Observe that set A and set B contain precisely the same

elements although they are not listed in the same order. A and

B are really the same set. We shall indicate this fact by writing

A = B.
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Although this is read, "set A is equal to set B," it means that

set A and set B contain precisely the same elements and that we

do not have two sets but only one.

In general, if "A" denotes a set, and "B" denotes a set,

the statement

A = B

means that "A" and "B" denote the same set. If sets A and B are

not the same set then we write

A / B.

Example 1: If X = (0,1) and Y = (x: x E W and x < 2)

then we have X = Y.

Example 2: If V = (red, green, blue)

and Y = (green, blue, red)

then V = Y. (Note that the order in which the

elements are listed is immaterial.)

Example 3: If V = (red, green, blue)

and X = (x: x is a color in the rainbow)

then V t X, because there are other colors

such as yellow in the rainbow. Yellow is an

element of X, but is not an element of V.

Since each of the colors red, green and blue is also a

color in the rainbow, it is clear that every element of set V

is an element of set X, or that V is a subset of set X, or that

set V is contained in set X. We denote the relation " is a sub-

set of " by the symbol " C." Thus in Example 3, V c X.

Definition: Set A is a subset of set B, denoted by A C B,

if and only if every element of set A is an

element of set B.

1 xi



Notice that the above definition implies that if A c B and

x E A, then x E B.

Example 1: Let A = (1), B = (0, 1, 2), C = (3, 4, 5, 6),

and D = (0, 1, 2, 3, 4, 5). Then we see that

A c B, B c D, A c D.

Example 2: Let X = (a, b, c) and Y = (c, a, b).

We see that X c Y because every element of X is

an element of Y. Furthermore Y c X.

Notice in Example 1 that C is not a subset of D because C con-

tains the element 6, whereas D does not contain this element.

This illustrates

Remark 1: If set A is not a subset of set B, then set A

contains at least one element that is not con-

tained in set B.

Notice also that Example 2 shows that A c B does not exclude the

possibility that A = B. In fact, we can make the following

general remark concerning how equality of sets is related to

the idea of subset:

Remark 2: If A is a set and B is a set, then A = B, if

and only if A c B and B c A.

Let us illustrate the above statement.

If A = (0, 1, 2, 3) and B = (1, 0, 3, 2) then clearly

A c B because every element in set A is also an element in set

B. Also, B c A because every element in set B is also an element

in set A. Thus, we conclude that A = B.

From the above we see that every set has at least one subset,

namely, itself. In fact,



Remark 3: If A is any set, then A c A.

We can examine a given set to see what subsets it contains.

For example, what subsets may be formed from the set A = (2,3)?

First of all, according to the above remark A is a subset itself.

Thus (2,3) a A or equivalently (2,3) a (2,3). Also it is clear

that set A yields two subsets each of which contains a single

element. That is

(2) c A and (3) C A.

It is curious, but true, that the empty set is a subset of

any set. This conclusion is logically forced upon us by Remark

1 above, because if we assume that 0 is not a subset of A, then

Remark 1 implies that 0 contains at least one element that is

not an element of A. But 0 contains no such element since by

definition 0 contains no elements. Thus we cannot say that 0

is not a subset of A , i.e., 0 is a subset of A. Since the

above argument would apply to any set A, we conclude with

Remark 4: If A is any set, then 0c A. Observe that the

set A = (2,3) has exactly four subsets:

(2,3), (2), (3) and 0.

Of these four subsets of A we shall say that (2), (3) and 0 are

proper subsets of A and that (2,3) is not a proper subset of A.

Note that proper subsets of a set do not contain all the elements

of the given set. In general we have the following

Definition: A is a proper subset of B, if and only if

A a B and A yg B.
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Example 1: Let K = (-1, 0, 1). Then each of (-1), (0),

(1), (-1, 0), is a proper subset of K.

Note (-1, 0, 1) is a subset of K but not a

proper subset of K.

Example 2: Let X be any set except the empty set. Then

because we know the 0' c X by Remark 4, and

because we are given V / X, we conclude that

V is a proper subset of X.

8.4 Exercises

1. Let G = (0, 1, 3, 7) and H = (7, 1, 0, 3). Explain why

G = H, or why not.

2. If G = (0, 1, 3, 7) and L = (x: x E W, x < 10) then explain

why:

(a) G C L (b) G / L

3. Mr. Jones has five children: Tom, Joan, Judy, Harry and

Dick. Let B = (Tom, Dick, Harry), G = (Judy, Joan)

R = (Tom, Joan, Harry, Judy).

(a) Explain why B is a subset of R, or why not.

(b) Explain why G is a subset of R, or why not.

4. Let E = x E W and x is even) and P = x is a positive

power of 2), i.e., P = (2, 4, 8, 16, ...).

Explain why the following are or are not true:

(a) P c E

(b) P =E

(c) 0 E E

(g) O c p

(d) 100 E E

(e) 100 E P

E P
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5. Let A = (5).

(a) List all of A's subsets.

(b) List all of A's proper subsets.

6. Let B = (5,7,9).

(a) List all of B's subsets.

(b) List all of B's proper subsets.

7. Using the data obtained in Exercises 5 and 6 above make

a conjecture concerning

(a) the number of subsets in a set containing 4 elements.

(b) the number of proper subsets in a set containing 4

elements.

(c) the number of subsets in a set containing 5 elements.

(d) the number of proper subsets in a set containing 5

elements.

(e) the number of subsets in a set containing n elements.

8. What can we conclude if we know that A is a subset of B but

that B is not a subset of A?

9. What conclusions, if any, can you draw from the following?

(a) X c Y and Y c Z.

(b) R c S and T c R.

(c) M c N and N c Q.

(d) X c G, YC T, and T c X.

( e ) A c Q, Q c R, and R c A.

(f) P c Q, and R c Q.

10. Let A = fp,q,r). Explain why the following are correct or

incorrect in the use of "c" and HE."

(a) p E A (d) A c A

16



(b) p c A

(c) (p) c A

(e) (p) E A

(f) 0 c A

11. Which of the following sets are the same?

(a) (x: x is a letter in the word "follow")

(b) (x: x is a letter in the word "wolf.")

(c) the set of letters in the word "flow."

12. Explain why the sets 0 and (0) are different sets.

13. Let X c Y and Y c Z. Assume x E X, y E Y, z E Z,

and also assume p % X, q % Y, r % Z.

Which of the following must be true? Explain.

(a) x E Z

(b) y E X

(c) z %X

(d) p E y

(e) q % X

(f) r %X

8.5 Universal Set, Subsets and Venn Diagrams

In order to avoid certain logical difficulties, we will

assume that in a given discussion the sets being considered are

subsets of a set S, called the universal set. We have already

seen situations where the idea of a universal set played an

important role. For example, in finding solution sets for open

sentences we have seen that results depend on the domain or

universal set considered.

The solution set of the open sentence

3 + x = 2

is (-1) if the universal set considered is the set Z, whereas

it is 0 if the universal set is set W.

In order to help visualize our work with sets we shall draw

diagrams, called Venn diagrams, which illustrate them. Here we
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represent a set by a region bounded by a simple closed curve,

for example:0 B ti7 Sets A, B., C

We shall usually indicate the universal set S as a plane region

bounded by a rectangle.

S

A universal set

Subsets of the universal set will be pictured by regions

enclosed within this rectan,le.

Subsets of a

Universal Set

When we picture sets this manner we must take care not

to confuse the geometric regions with the sets that these

regions represent. For example suppose that the universal set

S consists of all the students in your school. Suppose the subset

A consists of those students who are studying art, and the subset

B consists of those students who are studying biology. We can

Vennpicture these sets by means of a Venn diagram like this:

¶8
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The regions which represent the subsets A and B are drawn so

that they appear to overlap. This is done so as to provide a

region, namely the overlap, which will represent the subset of

those students who take both art and biology. The othe.e portion

of the A-region then represents the set of those students in the

school who study art but not biology. Similarly the other part

of the B-region represents the set of those students in the

school who are studying biology but not art. The region of S

outside of both A and B represents the set of students not taking

art or biology.

Now it may happen that one or more of these regions actually

represents an empty set. For example, suppose there are no

students in the school who take both art and biology. In that

case the overlap region represents the null set. This information

can be shown on the Venn diagram by placing the symbol "0" inside

the overlap region:

Of course, if we knew in advance that there were no members in

this set we could have drawn the A-region and B-region so that

19
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they did not overlap, but very often when dealing with sets we

may not have such information ahead of time. It is therefore

better to draw the Venn diagram, where the regions appear to

overlap, with the understanding that one or more of these

regions may, on further investigation, actually turn out to be

empty.

As another example, suppose that our Venn diagram for the

students taking art or biology looked like this:

A 8

S

The symbol "0" now indicates that there are no elements of A

outside /I of set B. This means that every art student in the

school is also studying biology. Since every element of A is

also an element of B, we now know that A c B is a subset of

B). Notice that this merely indicates that A is a subset of B,

but not necessarily a proper subset of B.

Suppose, for instance, that we find out that A is actually

a proper subset of B and we want to show this information on the

earlier Venn diagram. We need a way of indicating that there

is at least one element in B which is not in A. We shall do

this by placing the symbol "x" inside the portion of the B-region

which is outside the A-region:



-15 -

This shows that A is not only a subset of B, but also that

there is at least one element in B which is not in A.

Skill in drawing and interpreting Venn diagrams can be

helpful so let us study several further illustrations.

Example 1: Interpret the following Venn diagram:

S

First of all, B C A, because there are no elements of B

"outside" A. Moreover, set B is not empty, as is indicated by

the "x" in the other portion of the B-region. This "x" also

shows that A is not empty. We cannot tell if B is a proper sub-

set of A, because there is no information indicated for the

portion of the A-region which is outside the B-region. However,

the other symbol "x" outside both regions, indicates that there

is at least one element in S which is not in A. Hence A is a

proper subset of S. We can summarize all this information briefly,

as follows:

91cBcAcS, A/ 0, A/ S, andB 0.

Example 2: Draw a Venn diagram which will show that A is

a non-empty subset of B, and B is a proper sub-

set of C. (in symbols: A / 16, A c B, B c C,

B C) We can do this in more than one way.

We can start with a general diagram for the

21
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three sets. On it we indicate first that A C B.

A c B

Then, on the same diagram, we mark the infor-

mation that B C C by placing additional symbols

"0" in the appropriate regions. To show B is a

proper subset of C we place an "x" in the region

of C which is outside of B, indicating B A C.

A B and B C

S

A B and B C and B C

Finally, to show that A / 0 we enter the symbol

"x" in the remaining region of set A.

22
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Notl.ce that the conditions of the problem forced

us to place an "x" in the "center" region. This

shows that there is an element that is not

only in A, but also in B and in C. We know

now that there are at least two elements in C,

one "within" B and one "outside of" B.

On the other hand, we still do not know whether

or not the remaining two regions of the Venn

diagram represent empty or non-empty sets.

(These are (1) the region "inside" B, "inside"

C and "outside" A, and (2) the region "outside"

A, B and C.) We simply have no information

about them.

8.6 Exercises

1. What information about sets A and B is revealed by each of

the following Venn diagrams?

(a)

(c)

(e)

A F.)

S

x

(b)

(d)

(f)

23
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-s

2. Draw a Venn diagram to show each of the following for

subsets A and B of a universal set S:

(a) B c A and B / 0

(b) A c B and A / B

(c) A c B and B = S

(d) A c B and B S

(e) OcAcBcS
(f) B c A and B / 0 and A = S

3. Interpret each of the following Venn diagrams for subsets

A, B, C of a universal set S.

(a)

(b)

(c)

24

(d)

(e)

(f)
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4. Draw a Venn diagram to illustrate each of the followirg

situations for subsets A, B, C of a universal set S:

la) Aci3cC

(b) A = B and C / 0

(c) A = B and C = 0

(d) OcAcB= C

(e) OcB=AcCcS
5. Draw a Venn diagram which shows the following for subsets

A, B of a universal set S:

(a) There is at least one element in A which is not in B

and at least one element in B which is not in A.

(b) There is at least one element which is a member of

both A and B.

(c) There are no elements in both A and B but there is at

least one element in S which is neither in A nor in B.

(d) Every element of S is either in A or in B.

6. The following Venn diagram applies to subsets A, B, C of a

universal set S:

For each of the following statements, write

"YES" if the statement must be true;

"NO" if the statement must be false;

"MAYBE" if the statement may be true or may be false.

(a) There is at least one element which is contained in

all three sets A, B, C.

25
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(b) C is a subset of B.

(c) A is a subset of C.

(d) C is a proper subset of B.

(e) There is at least one element in A which is not in B.

(f) There is at least one element in C which is not in B.

(g) There is at least one element in A which is not in C.

(h) A is a subset of B.

(i) There are at least two elements in S which are con-

tained in both A and B.

(j) There is at least one element in S which is not con-

tained in any of the sets A, B, or C.

(k) There is at least one element in set B which is not

contained in either A or C.

(1) There is at least one element in set C which is not

contained in either A or B.

(m) There is at least one element in set A which fs not

contained in either B or C.

(n) There is at least one element in both A and B which is

not contained in set C.

(o) Each element contained in both A and C is also contained

in B.

8.7 Unions, Intersections and Complements

In earlier chapters we considered operations which assigned

new numbers to given ordered pairs of numbers. Now we shall

consider how new sets can be formed from given sets. There are

two important binary operations that we shall define on sets,

9R
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and one important unary operation. These operations have many

uses in subsequent work. In what follows we assume that the

sets A and B are subsets of a universal set S.

If A and B are sets we shall define a new set called the

union of A and B, denoted by "A U B," as follows:

Definition: A U B is the set that contains those and only

those elements each of which belongs either to

A or to B (or to both); i.e.,

AU B = (x: x E A or x E 13)

(Notice that here "or" is used in the sense

"and/or.")

Example 1: If A = (0,1,2,3) and B = (3,4,5), then A U B =

(0,1,2,3,4,5).

Example 2: If V = (rr-4., green, blue, violet, yellow)

and X = (violet, indigo, blue, orange) then

V U X = (violet, indigo, blue, green, yellow,

orange, red).

Example 3: If W is the set of whole numbers and A = (0, 1,

2,3), then W U A = W.

Remark 1: From the definition of A U B we see that

AUB=BU A.

Remark 2: Since A U B contains all the elements of A

and also contains all the elements of B we

can conclude that

A U B) and B e U B).

27



-22 -

In the Venn diagram below we have shaded the region which

represents A U B.

A U B is shaded

If A and B are sets we now define a new set called the

intersection of A and B, denoted by "A fl B," as follows:

Definition: A fl B is the set that contains those and only

those elements each of which belongs to both A

and B, i.e., A n B = (x: x E A and x E B).

Example 1. If A = (0,1,2,3) and B = (3,4,5), then A fl B = (3).

Example 2. If V = (red, green, blue, violet, yellow) and

X = (violet, indigo, blue, orange) then

V n X = (blue, violet).

Example 3. If W is the set of whole numbers and A = (0,1,2,3),

then W n A = (0,1,2,3) = A.

Example 4. If A = (0,1,2,3), B = (3,4,5), and C = (0,3,5),

then (A n B) n C = (3) n (0,3,5) = (3).

Example 5. If A = (0,1,2,3) and B = (4,5) then A n B =

} =

Remark 1: From the definition of A fl B we see that

AnB.Bn A.

Remark 2: If A fl B = 0, as in Example 5, this indicates

that sets A and B have no elements in common.

In that case we say that A and B are disjoint

sets.
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Definition: A and B are called disjoint sets if and only

if A n B 0.

In the Venn diagram below we have shaded the region that

represents A 11 B.

A n B is shaded

Besides obtaining new sets by assigning a new set to a pair

of sets it is also useful to define a particular unary operation

on every subset of S. If Aisa given subset of a given universal

set S, we define a new set called the complement of A, denoted

by 7," as follows:

Definition: K is the set of all elements of a given universe

S that are not contained in A, where A is a

subset of S, i.e.,

(x: x E S an( x $t A) .

Example 1: If S = (0,1,2,3,4,5) and A = (0,2), then

= (1,3,4,51.

Example 2: Let S = W, that is, the universal set is the

set of whole numbers. Let E (x: x E W and

x is even) and 0 = (x: x E W and x is odd).

Then 7 = 0. That is, the complement of the

set of even whole numbers in the set of whole

numbers is the set of odd whole numbers.

Similarly, 175 = E.
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Example 3: If S = (0,1,2,3,4), A = (0,2,4) and E = (3,4),

then

i) = (1,3)

ii) T3 = (0,1,2)

iii) Since A fl B = (4) we see that

A n B = (41 = (0,1,2,3)

The Venn diagram for IT is given below, i.e., all of S is

wrwrTrrrw.rrrrr. S
shaded except A.

"A: is shaded

The Venn diagram for KU7N. is given below. Since A U B is

the set consisting of all elements in S that are not in the set

A U B we shade all of the S-region except the part that repre-

sents A U B.

8.8 Exercises

A U B is shaded

1. Let the universal set S be the set of all students enrolled

in your school. S = (all students). Let A, B and C be the

following subsets of S. A = (all 7th graders), B = (all

boys), C = (all students who bus to school).

Describe in words each of the following:
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(a)

(b)

A

13-

(i)

(j)

13- n C

:RUC

( c ) A n B (k) A U (B U C)

(d) B n C (1) A fl (B fl c)

(e) AU B (m) A n (Ii u C)

(f) B U C (n) K U (B u "d")

(g) AnB (o) K n n c)

(h) AUB (p) A fl (B U C)

2. Let the universal set S be S = (0,1,2,3,4,5,6 7,8,9).

Further, let A = (0, 2, 4,

c = (2, 3, 5, 7).

Determine the following:

6, 8), B = (1, 3, 5, 7, 9) and

(a) A U B (g)

(b) A n B (h) 13-

(c) A U C (i) C

(d) A n c (j) K u

(e) BU C (k) A n C

(f) B n c (1)

3. Using the sets in Exercise 2 determine the following:

(a) (A U B) U C

(b) A U (B U C)

(c) A n (B fl C)

(a) (A n a) fl c

4. Using the sets in Exercise 2 determine the following:

(a) AU (B fl C)

(b) (A U B) n (A U C)

31
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(d) (A n B) U (A n C)
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5. If s = (-4,-3,0,3,4,7,8,16)

A = (-4,0,8,16)

B = (-3,3,4,8)

C = (0,7)

Determine each of the following subsets of S:

(a)

(b)

A U B (h)

(i)

Au

An (B u c)A U B

(c) A n (j) (A u B) u (A n c)

(d) A n B (k) A U (B n C)

(e) A n B (1) (A u B) n (A u c)

(f) A U (A n B) (m) K U (B u c)

(g) A n U B) (n) A n cg n

6. Using the data obtained in the above exercises state some

conjectures concerning the properties of the operations

of union and intersection on any sets A, B, and C. Can

you offer any further evidence to support your conjectures?

7. Let N be the set of natural numbers, i.e., the set of whole

numbers with zero deleted. Let the universal set be W,

that is, the set of whole numbers. Determine if the follow-

ing are true or false. Explain your answers.

(a) NUW= W (e) WUTT = 0

(b) N n w = (0) (f) THIN=S

(c) N = (0) (g) WUN= 0

(d) W = o (h) WrIN. 0

8. Using the definitions of "subset," "intersection," and

"union" write out an argument why the following are true:

(a) (A n B) c A (b) n B) c A U B.

32
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9. Using your definitions explUn why the following are true:

If A is any subset of a universal set S, then:

(a) AUA= A (e) S =0

(b) AnA= A =

(c) AUK=S (g) AUS= S

(d) An'E.= 0 (h) An0= 0

10. If we denote the complement of the complement of set A by

III determine what set K is equal to.

11. Copy the Venn diagram below and shade in the set represented

by A n B.

12. Let us define a new operation, called the difference of A

and B, denoted by "A\B", as follows: If A and B are subsets

of a universal set S, then A \B = (x1xEA and x0).

(a) Determine if = A fl B.

(b) Determine if A\B = B\A.

(c) Determine if (A\B) c A.

(d) Determine the set represented by the union of A \B,

A fl B, and INA.

(e) Determine the set represented by the intersection of A\B

and AA.

13. Copy the Venndiagram below and shade in the set represented

by (A n U (A fl B).

3:3
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"14. Let us define a new operation called the symmetric dif-

ference of A and B, denoted by " A A B," as follows:

A 6 B = (AFB) U (BSA).

(a) Determine if A 6 B = (A U B) \ (A fl B.

(b) Determine ifAAB= (x: x E A or x E B, butx0AnB).

(c) Determine if A 6 B = (A fl f) U fl B) .

(d) Determine whet set is represented by (A U B) \ (A A B).

15. Let the universal set be Z (the set of all integers).

Let A, B, C, D be the following subsets of Z:

A = (x: x is positive)

B = (x: x is negative)

C = (x: x is less than 10)

D = (x: x is greater than -5)

Determine each of the following sets:

(a) A n B (f) C I D

(b) A U B (g) (A n c) n D

(c) B n c (h) A fl (C fl D)

(d) B U C (i) A n (c u D)

(e) C U D ( 0) (A n c) u D

8.9 Cartesian Product Sets: Relations

In earlier parts of this book you often dealt with the idea

of an ordered pair of elements. In many cases you had to dis-

tinguish between the pair (a b) and the pair (b,a). For example,

this occured when you discussed operations, mappings, outcome

sets, lattices, etc. To stress the order of the elements, one
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of the elements in the pair was designated as the first element

or first coordinate of the pair, and the remaining element was

designated as the second element or second coordinate of the

pair. We shall now make use of the idea of ordered pair in order

to show how a new set can be formed from two given sets.

Let A = (1,2,3) and B = (4,6). From the sets A and B we

form all pairs such that each pair contains an element of A as

first element and an element of B as second element. These pairs

are (1,4), (1,6), (2,4), (2,6), (3,4), and (3,6). We designate

the set of these ordered pairs by "A x B." This new set of

ordered pars is called the Cartesian product of A and B, or

simply "A cross B." Thus:

A x B = ((1,4), (1,6), (2,4), (2,6), (3,4), (3,6))

Note: The sat A x B is named after the mathematician

Rene Descartes who, in the seventeenth century, studied

such sets.)

Observe that set A contains three elements, set B contains two

elements, and the set A x B contains six elements.

Given the same sets A rind B as above we can also form the

set B x A We have

B x A = ((4,1), (4,2), (4,3), (6,1), (6,2), (6,3))

We see that if we reverse the coordinates of each ordered

pair in A x B we obtain B x A. It is important to note that

although B x A also contains six elements, it is not the same

asAxB. In fact, unlessA= B, AxB/Bx A.

We can illustrate this by graphing the lattice points

associated with each of the Cartesian products. In the graph

35



- 30 -

below we see that elements of A x B ere represented by points

with crosses, whereas the elements of B x A are represented by

points with circles.

2

3

4

A x B

1 2 3 4 5 6

x A

We often form the Cartesian product of a set with itself.

Thus, for the given sets A and B we obtain:

A x A = ((1,1),

(3,1),

B x B = ((4,4),

(1,2),

(3,2),

(4,6),

(1,3),

(3,3))

(6,4),

(2,1),

(6,6))

(2,2), (2,3),

We can also use tree diagrams to represent Cartesian products.

Thus we would have:

36



Set A Set B AxB

4 (1,4)

6 (1,6)

4 (2,4)

6 (2,6)

4 (3,4)

6 (3,6)
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Set A Set A AXA

2

3

1 (1,1)

2 (1,2)

3 (1,3)

1 (2,1)

2 (2,2)

3 (

1 (3,1)

2 (3,2)

3 (3,3)

Set B Set A BKA

(4,1)

(4,2)

3 (4,3)

(6,1)

2 (6,2)

3 (6,3)

Set B Set B BXB

4 (4,4)

(6,6)

The following examples illustrate other instances where we

consider the Cartesian product of a set with itself.

Example 1: Let the set S represent the outcome set of a

toss of a single die, that is, S = (1,2,3,4,5,6).

Then S x S would represent the outcome set for
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Example 3:

Example 4:
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the toss of a pair of dice.

Let T = (5). Then T x T = ((5,5)). Note that

T / T x T.

Let Z represent the set of integers. Then

Z x Z can be represented by the set of lattice

points in the plane.

Let W be the set of whole numbers. The opera-

tion of addition on W, denoted by "+," is a

mapping which assigns to every element of W x W

a unique element of W called a sum. In symbols

W x W W.

Under this mapping, any ordered pair (a,b) in

W x W, maps into the sum a. + b.

(a,b) ----L.-0- a + b

We summarize our ideas about Cartesian product sets with

the following definitions:

Definition: The Cartesian product A x B of two sets A and B

is the set of all ordered pairs (a,b), where

a E A and b E B.

More compactly we have

Definition: A x B= ((a,b): a E A and b E B).

Now consider the set

S =

The product set consists of all possible ordered pairs of these

elements

S x S = ((x,y): x E S and y E S)

or
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S x S = ((-5,-5), (-5,-4),---(-4,-5), (-4,-4), (-4,-3)--

(0,-5), (0,-1)(5,5))

Let us select those pairs of the product set in which the

first number x, is related to the second number y by the expression

x is a square root of y

By testing each pair we find the subset

R = ((-2,4), (-1,1), (0,0), (1,1), (2,4))

We call this subset of a product a relation on S. The elements

of S are related by the expression "is a square root of."

In a similar way consider the set

A = (1,2,3,4).

The product set is

A x A = ((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4) - --

(4,3), (4,4))

Let us select those elements of A x A for which the first

element a is related to the second member by the expression

a is less than b or a < b.

It is easy to find that this subset of A x A is the set

Y = ((1,2), (1,3), (1,4), (2,3), (2,4), (3,4)).

Thus a < b is a relation on the set A and it is a subset of A x A.

Another relation could be the subset for which a = b. Then

X = ((1,1), (2,2), (3,3), (4,4)),

or

X= ((a,b): a E A, b E A, and a= b).

The relation a. = b -2 would be the subset M = ((1,3), (2,4)).

Generally, any subset of a Cartesian product is a relation. Thus

for A x A, the following are relations:
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Rl

R

R3

=

=

=

((2,1),

((2,1),

((1,1),

(1,2),

(3.2),

(2,1),

(3,1),

(14,3))

(3,3),

(1,3),

(4,2))

(4,1), (1,L1))

In R3 the four elements were picked out at random. However,

most useful relations are given by some explicit relational phrase.

To determine the relation we may do the following:

(1) Select a relational phrase.

(2) Flank the phrase on the left by the first element

and on the right by the second element of an ordered

pair. Do this for every element of the Cartesian

product.

(3) Determine the truth or falsity of the resulting

statement.

(4) The subset of ordered pairs that yield true statements

is a relation.

As another example again let

S = (-5,-4,-3,-2,-1,0,1,2,3,4,5).

The relational phrase connecting the elements of (x,y) is

x is the square of y.

Some instances are

(-5,0): -5 is the square of 0 (False)

(0,0): 0 is the square of 0 (True)

(4,2): 4 is the square of 2 (True)

(4,-2): 4 is the square of -2 (True)

(2,1): 2 is the square of 1 (False), etc.

The set of ordered pairs for which we achieve true statements is

R = ((0,0), (1,1), (1,-1), (4,2), (4,-2)).

We can speak of this as the "square of" relation and write x = y2.
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If an ordered pair of elements (a,b) is in the reletipn R

then we shall express this by writing

(a,b) E R

or by writing

aRb.

We reed this letter notation es "a is in the relation R to b."

Thus for the relation X we have (1,1) E X, (2,2) E X, (3,3) E X.

or equivalently, 1X1, 2X2, 3X3, which are read "1 is in the

relation X to 1," etc.

Similarly for the relation Y we have (1,3) E Y or, equiv-

alently, 1Y3. It may appear strange, at first, to see such

statements as "1Y3," However, a familiar example of the "aRb"

notation is seen when we consider the relation "equality,"

denoted by the symbol "=," on the set W x W. If we write "a = b,"

we mean that "a" and "b" are different names for the same whole

number. Thus we may have 1 = 1, 2= 1 + 1, 3 2 + 1, 0 = 1 - 1,

etc. The sentence "Ei = b" singles out all those ordered pairs

in W x W whose first coordinate is the same as the second

coordinate, i.e., R = ((0,0), (1,1), (2,2),...). The subset of

all these ordered pairs therefore defines the "equality" relation

on W, and we use the symbol "=" to denote this equality relation.

Instead of writing "en" we write "a = b."

We consider e few more examples of relations.

Example 1: Let D = (2,3,5). We define a relation L on D

as follows: (a,b) E L or a L b if and only if

a E D, b E D, and a < b. Thus L = ((203), (2,5)0

(305)). We could write
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(2,3) E L, (2,5) E L, end (3,5) E L or

equivalently

2 L 3, 2 L 5, end 3 L 5.

(We usually express the above by writing 2 < 3,

2 < 5, and 3 < 5.)

Example 2: Let A = (2,3,5,6). We define a relation D on

A es follows: aDb if and only if e E A, b E A,

and a "divides" b.

Hence, D = ((2,2), (2,6), (3,3), (3,6), (5,5),

(6,6)). We could also write 2D2, 2D6, 3D3, 3D6,

5D5, and 6D6. Observe that D x A).

Note: We frequently denote the relation "divides" by

the symbol "1." Then we express the above by

212, 216, 313, 316, 515, and 616. The fact

that "3 does not divide 5" could be written as

31/5 or 305 or (3,5) g D.

Each of the relations described here can be pictured on 8.

coordinate diagram for A x A. Such a diagram is called a

Cartesian Graph. Thus Example 2 can be pictured as follows:

3 5 6

Each lattice point (marked by circles) represents an element of

A x A, but only those marked "x" belong to the relation D.
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Another convenient way of studying some relations is .

through the use of arrow diagrams. This device is also called

a graph of the relation.

If aRb, then we designate two points and label them "a"

and "b." Because aRb we direct an arrow from the point labeled

"a" to the point labeled "b."

b

Note that if bRa then the direction of the arrow is reversed.

a

If we have both aRb and bRa, then indicate both by:

If it is the case that eRa then we draw a loop at the

point labeled "a."

9

Thus we can draw the following arrow diagram to represent

the relation D in Example 2 above:

Observe that en arrow is drawn which connects "2" to "6"

because 216 and also an arrow is drawn which connects "3" to "6"

because 316. Note that no arrow joins "2" to "5" because 2

43
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does not divide 5 (i.e., 2,"5). Note also the loops at each

point which indicates that each of the numbers divides itself.

Example 3: Let P be the set of all subsets of the set

(1,2). The set P then is given by

P = (0, (1), (2), (1,2)).

Consider the relation "is a subset of" denoted

by "C" on the set P. We use an arrow diagram

to indicate which elements of P are subsets of

each other.

(1)

(1,2)

r2

0

Observe that at each point representing an element of P we

have a loop. This is because the elements of ?, namely 0, (1),

(2), (1,2) are sets, and every set is a subset of itself. Also,

"0" is connected to "(1)," "(2)," and "(102)" because the empty

set 0 is a subset of every set. Further, both "(1)" and "(2)"

are connected to "(1,2)" since (1) c (1,2) and (2) c (1,2). Do

you see that there are nine elements, that is, nine sets of

ordered pairs of elements, in the relation "e on P?

Example 4: As in Example 3 let P be given by

P = (0, (1), (2), (1,2)).

The relation "is a proper subset of," on the

set P is a subset of the relation represented

in the arrow diagram above. If the loops are

removed from that diagram we have a represen-

tation for is a proper subset of " on P.
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Example 5; Let Z represent the set of integers. Define

the relation S on Z as follows: aSb if and only

if b is the square of a. Thus

S = ((0,0), (1,1), (-1,1), (2,4), (-2,4),

(3,9), (-3,9),...).

Observe that S c (Z x Z).

Example 6: Let C represent the students in a classroom.

Define the relation L on C as follows. Two

students x and y are in the relation L on C if

and only if x lives within 1 block of y. Can

relation L on C be an empty set?

Example 7. The following arrow diagram shows a simplified

family tree.

Henry

Tam

Joan

Mary

Emma Georg. Agner Pe e Frank

The above tree indicates that Tom had four chil-

dren, namely Henry, Bill, Mary and Joan. Henry

had one daughter, Emma. Bill and Joan each had

two children whereas Mary had none. Using the

first letters of their names to represent people

we see that the relation "is a grandfather of"

is the set ((T,E), (T,G), (T,A), (T,P), (T,F)).

Let us now summarize some ideas associated with the concept

of relation. A binary relation (or relation) R from a set A to

45
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a set B is a subset of A x B. If R is a relation from set A to

set B, then R assigns to each ordered pair (a,b) in A x B exactly

one of the following statements:

i) "a is related to b," written "aRb."

ii) "a is not related to b," written "Ob."

Since a relation R from a set A to a set B is a subset of A x B,

we see that every relation is a set of ordered pairs. We shall

be concerned most often with a relation R from a set A to the

same set A. We say, in this case, that R is a relation on the

set A. Here, of course, R C (A x A,.

8.10 Exercises

1. Using Example 7 in 8.9, list the elements in the following

relations: (Note: Represent each person oy the first

letter of his name.)

(a) is a father of (d) is an uncle of

(b) is a brother of (e) is a sister of

(c) is a grandmother of

2. Let P = (1,2) and Q = (2,3,4). Determine the following

Cartesian products:

(a) P x Q (c) P x P

(b) Q x P (d) Q x Q

3. Copy the coordinate scheme given below on your paper.

Using Exercise 2 above, graph the following Cartesian

products using the symbols indicated:
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(a) graph P x Q using crosses (x)

(b) graph Q x P using circles (o)

(c) graph P x P using triangles (A)

(d) Determine the following:

(1) (P x Q) n (Q x p)

(2) (P x p) n (Q x P)

(3) (P x P) fl (P x Q)

(4) P x (P n Q)

(5) (P x P) U (P x Q)

(6) P x (P U Q)

(e) On the basis of your answers to 3 (d) above make

one more conjectures about the properties of "x."

4. Let M = (1,2), N = (2,31, and P = (4,5).

(a) Determine the following:

(1) (M x N) U x P)

(2) M x (N U P)

(b) What do you observe?

5. Let A = (0,2,4) and B = (0,1,2). Let R be the relation

is greater than," denoted by ">," from A to B, i.e.,

aRb if and only if a > b, where a E A and b E B.

(a) Write R as a set of ordered pairs.
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(b) Of what set is R a subset?

(c) Explain why OR2, or why not.

(d) Explain why 4R3, or why not.

6. Let B = t2,4,5,8,15,45,60). Let R be the relation

"dJA.I.des," denoted by "1," on the set B, i.e., aRb if

and only if alb.

(a) Write R as a set of ordered pairs.

(b) Of what set is R a subset?

(c) Represent the set R by means of an arrow diagram.

(d) Explain how your diagram does or does not indicate

the following:

(1) 212 (4) 2145

(2) 214 (5) 4515

(3) 218 (6) 60160

7. (a) Let S be the set of all subsets of the set (x).

Draw an arrow diagram to represent the relation "is

a subset of," denoted by "c.," on the set S.

(b) Let T be the set of all subsets of the set (x,y,z) .

Draw an arrow diagram to represent the relation "is

a subsLc of," denoted by the "c," on the set T.

8. Let A = (1,2,3,4). We define a relation R on A as the set

of ordered pairs of numbers designated by crosses (x) in

the coordinate diagram of A x A given below.

A

4t

3

2 A

A )

if

2 3 4
A
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(a) Explain why each of the following is true or f &ise:

(1) 1R1 (5) 4X3

(2) 2R2 (6) 4g2

(3) 3R2 (7) 4g4

(4) 2R4 (8) 3X3

(b) Find (x: (x,2) E R), that is, find all the elements

in A which are related to 2.

(c) Find (x: 4Rx), that is, find all the elements in A

to which 4 is related.

9. (a) Is every relation a mapping? Explain.

(b) Is every mapping a relation? Explain.

(c) Let the relation R from A to B to sketched on the

ccurdinate diagram of A x B. What test could one

devise in order to determine whether or not R is a

mapping of A into B?

10. Research Problem: If set A has melements and set B has

/1 elements, how many different relations could we define

from A to B? Experiment and write a report of your

findings.

8.11 Properties of Relations

In this section we shall consider a relation R only if it

is a subset of the Cartesian product of some set A with itself.

That is,

RCAxA
Again we shorten this by saying A is a relation on the set A.
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A = (2,3,5,6)

and the relation on it "divides." This relation is the subset

of A x A

D = (2,2), (2,6), (3,3), (3,6), (5,5), (6,6) )

and illustrated by the following diagram.

5 fib

This relation D has a particular property indicated by the

fact that there is a loop for each element of the set A. Since

212, 3 13, 515, 616, we see, that for each element a of A

aDa or (a,a) E D

We describe this property by saying D is a reflexive relation

on A.

the relation "e on the set P = (0, ix), (y),

(x,y)), as given in Example 3 in 8.9 is a reflexive relation on

P. Again, the arrow diagram indicates this reflexive property

by a loop at each point.

The relation "is a proper subset of" on the same set Po as
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given in Example 4 in 8.9 is not a reflexive relation on ?,

because it is not true that a set is a proper subset of itself.

Let us make a precise statement concerning the property of

reflexivity that a relation on a set may or may not possess.

Definition: Let R be a relation on a set A. R is called a

reflexive relation on A if and only if, for

every a E A, (e,e) E R or aRa. In other words,

R is reflexive on A if and only if every element

in A is related to itself.

Question 1: Let S be the relation on Z given in Example

in 8.9, that is

S = ((0,0), (1,1), (-1,1), (2,4), (-2,4),...).

Is S reflexive on Z? Explain.

Question 2: Let V = (1,2,3,4,5). Let R be the relation on

V given by R = ((1,1), (1,2), (2,2), (2,3),

(3,3), (4,4), (5,5)).

Is R reflexive on V? Explain.

Question 3: As in Example 6 of 8.9, let C represent the

students in a classroom. Let L denote the

relation "lives within 1 block of" on C. Is

L reflexive on C? Explain,

Certainly, one of the most basic relations that we encounter

is that of "equality," denoted by "=." For example, if W is

the set of whole numbers then x = x for all x E W. Hence

equality is areflexive relation on the set W. (In fact equality

is reflexive on any set.) Another important property of the

relation equality is the following: If x, are whole numbers
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and x = y, then y = x. We express this property by sa:'ing

that equality is a symmetric relation on the set W.

Again let C represent the students in a certain school and

L denote the relation "lives within 1 block of" on C. It is

evident that if Bill lives within one block of Jim, then Jim

lives within one block of Bill. In general, if x lives within

one block of .r, then 2 lives within one block of x. The relation

"lives within one block of" is a symmetric relation on C.

As another example, suppose that M represents only the

male children (boys) in the school and let B denote the relation

on M defined by "is a brother of." It is clear that if Bill is

a brother of Jim, then Jim is a brother of Bill. In general if

x E M and y E M, then xBy implies yBx. The relation B is a

symmetric relation on M.

Now suppose that C is the set of all children in the school

(including girls es well as boys); then we could have xBy but

not yBx (for example suppose Jim is a brother of Jane). Thus

the relation"brotherhood" is not symmetric on set C, although

it is symmetric on set M. The above examples suggest the follow-

ing definition:

Definition: Let R be a relation on a set A and let ja and

be any elements of A. We say R is a sam-

metric relation on A if and only if aRb implies

bRa.

Example 1: Let K = (1,2,31. An easily found relation R

on K is the Cartesian product KxK. Since KxK

c KxK, KxK is a relation R on K. We find that
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R = ((1,1), (1,2), (1,3), (2,1), (2,2),

(2,3), (3,1), (3,2), (3,3)).

Note that 1 R 2 implies 2 R 1, 1 R 3 implies

3 R 1, etc. If we consider the arrow diagram

of R on K we observe

that R is a symmetric relation of K since when-

ever there is an arrow from a to b there is a

corresponding arrow from b to a. Recall that

the loops at each point signify R is also a

reflexive relation on K.

Example 2: Let K = (1,2,3,4,5) and consider the relation

R on K defined by "evens or odds;" that is, if

a, b E K, then a R b if and only if a and b are

both even whole numbers or both odd whole num-

bers. This means that

R = ((1,1), (1,3), (1,5), (2,2), (2,4),

(3,1), (3,3), (3,5), (4,2), (4,4),

(5,1), (5,3), (5,5)).

Notice that (1,3) E R and (3,1) E R since 1 and

3, regardless of the order in which you consider

them, are both odd whole numbers in K. Is it

always true that whenever (a,b) E R, it follows
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that (b,a) E R? If so, then we may say that the

relation R is symmetric.

Example 3: Let J = (1,2,3,41. Let us define 8 relation

S on J as follows: If a, b E J then aSb if

and only if a / b. Thus 1S4 because 1 / 4.

Also 4S1 because 4 / 1. The arrow diagram for

S on J indicates that S is a symmetric relation

on J.

Example 4: Let Z be the set of integers. The relation

"less than or equal to," denoted by "<" is

not a symmetric relation on Z because for all

a, b E Z, a < b does not imply that b < a.

For example, 3 < 4 does not imply 4 < 3.

The relation described in Example 4, that is "<" on Z is

not symmetric.

The next property that we shall examine is illustrated by

the following: We know for the set W of whole numbers that if

a = b and b = c, then a = c. The relation of "equality" is

said to be a transitive relation on W. The general property is

given in the following definition.

Definition: Let R be a relation on a set A where a, 12, and

are any elements of A. We say that R is a

transitive relation on A if and only if when-
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ever aRb and bRc, then aRc.

Example 1: Let Z be the set of integers and let R be the

relation on Z defined by "x is less than y."

Then R is a transitive relation on R since

if x < y and y < z, then x < z.

In particular, we note that not only do we have

0 < 7 and 7 < 100, we also have 0 < 100.

Again, not only do we have -5 < -3 and -3 < -1,

but we also have -5 < -1.

Example 2: Let H = (1,2,3,4). Let us define a relation

R on H as follows:

R = ((1,2), (2,3), (1,3), (3,4), (4,1)).

If we examine the arrow diagram of the relation

R on H we see that not only do we have 1R2 and

2R3, but we also have 1R3.

So far so good. But now observe 1R3 and 3R4.

Does this imply that 1R4? It does not Actual-

ly the arrow points from 4 to 1. This means

4R1 and indeed 1R4 is not in the relation.

Since the transitive property fails for at

least one triple of elements of H, we say that

R is not transitive on H.
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Example 3: Let B = (2,3,6,12) and let D be the relation

"divides" on B. The arrow diagram below in-

dicates that 316 and 6112. We therefore check

to see if 3112. The arrow diagram indicates

this is indeed so. Next we observe that 216

and 6(12, and we note that 2112.

In the present case, these two verifications

are sufficient to show that D i$ a transitive

relation on B. (All the other possibilities

are trivial.)

We have pointed out in this section that the important re-

lation of "equality" on the set W satisfies three properties,

namely, the reflexive, the symmetric and the transitive proper-

ties. That is.

(i) Reflexivity. For every whole number a, a = a.

(ii) Symmetry. For any whole numbers a end b whenever

a = b, then b = a.

(iii) Transitivity. For any whole numbers a, b, and c,

whenever a = b and b = c, then a = c.

In the next section we shall see that if a relation on a

set has these three properties some important results can be
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derived. Any relation on a set which has these properties is called

an equivalence relation. Thus we have the following

Definition: A relation R on a set A is an equivalence

relation if and only if

(1) R is reflexive; that is, for every a E A,

(2) R is symmetric; that is, for every a and

_tin A, whenever aRb, then bRa.

(3) R is transitive; that is; for every a, b,

and in A, whenever aRb and bile, then aRc.

Example 1: Consider the relation defined by "has the

same first name as" on the set C of students

in a classroom. We check to see that the re-

quirements in the above definition are satis-

fied. Let x, y and z be any students in the

class. Then

(1) x has the same first name as x;

(ii) if x has the same first name as 15

then y has the same first name as x;

(iii) if x has the same first name asz and

v has the same first name as 10 then

x has the same first name as z.

Since each of the above is true, the relation

defined by "has the same first name as" is (i)

reflexive, (ii) symmetric, and (iii) transi-

tive on C, and hence is an equivalence relation

on C.
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Example 2: Consider the relation "C" on all the subsets

of A = (ebb). We find that "c" is reflexive

and transitive on A, but although (a) c (a b)

it is not true that (a,b) c (a). We see that

the relation is not symmetric on A. Hence it

is not an equivalence relation on A.

Example 3: Let P be the set of all people in the United

States, and let T be the relation "has the

same blood-type as." (We :ay "aTb" if and

only if, a has the same blood-type as b.) Is

T an equivalence relation on P? Yes, because

(1) T is reflexive on P. (Everyone has the

same blood-type as himself.)

(2) T is symmetric on P. (Whenever a has the

same blood-type as then b has the same

blood-type as a.)

(3) T is transitive on P. (Whenever .1, has the

same blood-type as b and b has the same

blood-type as g then a has the same blood-

type as :g.)

Example 4: Let B be the set of all savings banks in the

United States, and let D be the relation on B

defined by "pays the same interest rate as."

We readily verify that D is reflexive, symmetric

and transitive on B, and hence D is an equiva-

lence relation on B.
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Example 5: Let T be the set of maximum temperatures record-

ed for each day of the year 1966. (T is there-
,

fore represented by a list of 365 temperature

readings.) Let R be the relation on set T de-

fined by: xRy if and only if temperature x

differs from temperature it by less than two

degrees. Is R an equivalence relation on the

set T? Let us check each requirement.

(1) Is R reflexive? Yes, because each temper-

ature reading certainly differs from it-

self by less than two degrees.

(2) Is R symmetric? Yes, because whenever

temperature x differs from t(lperaturei

by less than two degrees the temperature

1:certainly differs from temperature x by

less than two degrees.

(3) Is R transitive? No, because if temperature

x differs from temperature y by less than

two decrees and temperature y differs from

temperature z by less than two degrees, it

does not follow that temperature x must

differ from temperature z by less than two

degrees. (Suppose for example that x is

degrees higher than and ,y is

degrees higher than z. Then x is 3 degrees

higher than z!) Thus, although the re-

lation R is both reflexive and symmetric,
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it is not transitive and hence is not an equiva-

lence relation on the set T.

Example 6: Let K = (1,2,3) wits a relation defined on it

which is illustrated by the arrow diagram below.

Examine this diagram and convince yourself that

the relation illustrated is (i) reflexive, (ii)

symmetric, and (iii) transitive on K, and hence

is an equivalence relation.

8.12 Exercises

1. Let E = (1,2,3) with the following relation R defined on it.

R = ((1,1), (1,2), (2,3), (2,2), (3,3), (2,1))

(a) Explain why R is a relation on E.

(b) Draw an arrow diagram which represents R on E.

(c) Explain why R is or is not (1) reflexive, (2) symmetric,

(3) transitive

2. Let S be e relation on e set F, where F = (1,2,3,4) end

S = ((1,1), (1,3), (2,2), (2,3), (2,1), (3,2), (3,3), (3,4),

(4,1)).

(a) Draw en arrow diagram for S.

(b) Explain why S is or is not (1) reflexive, (2) symmetric,

(3) transitive.
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3. Each of the following open sentences defines a relation on

the set W of whole numbers. Determine for each if it is

or is not a reflexive relation on W.

(a) a is less than or equal to b.

(b) = 8 - b.

(c) .. divides

(d) a is greater than b.

(e) a is equal to b.

(f) the square of a is b.

(g) e - b is divisible by 5.

4. In Exercise 3, determine which relations are symmetric on W.

5. In Exercises 3, determine which relations are transitive on

W.

6. Which of the relations in Exercise 3, if any, are equiva-

lence relations.

7. (a) When is a relation R on a set A not reflexive?

(b) When is a relation R on a set A not symmetric?

(c) When is a relation R on a set A not transitive?

8. Let A = (1,2,3). Consider the following relations on A:

Ri = ((1,1), (1,2), (1,3), (2,1), (2,3))

112 = ((1,1), (2,3), (3,2), (1,2), (3,1))

R3 = ((1,2), (2p3), (1,3))

R4 = ((1,1))

Ra =AxA

Determine which of these relations is, and which is not

(a) reflexive

(b) symmetric

(c) transitive.
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9. Examine the relation defined by "is a brother of" for a

set of people with respect to

(a) reflexivity,

(b) symmetry,

(c) transitivity.

10. Let A = (2,4,6). Consider the following relations on A:

RI = ((2,2), (4,2), (4,4), (4,6))

Ita = ((2,2), (4,6), (6,4))

R3 =AxA

H4 = ((2,2))

113 = ((214))

(a) Determine which of these relations is (1) reflexive

(2) symmetric (3) transitive, on the set A.

(b) Indicate which, if any, are equivalence relations on A.

11. Let L be a set of lines in the plane and let P be the re-

lation on L defined by "LI is parallel to 4." Determine

whether or not P is (a) reflexive, (b) symmetric, (c)

transitive, (d) an equivalence relation. (Assume a line

is parallel to itself.)

12. Let S be the collection of subsets of (x,y,z). If A and B

are elements of S the following describe relations on S:

(i) "A B"

(ii) "A a B and A is not equal to B"

(iii) "A is disjoint from B"

Determine which of the above relations on S are (a) reflexive

(b) symmetric, (c) transitive.

*13. A relation R on a set A is called irreflexive if and only

if a g a, for all a E A.
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(a) Which of the relations in Exercise 3 above are

irreflexive?

(b) Which of the relations in Exercise 8 above are

irreflexive?

(c) Which of the relations in Exercise 10 above are

irreflexive?

(d) Which of the relations in Exercise 12 above are

irreflexive?

*14. Definition: Let R be a relation on a set A where a end b

are any elements of A. We say R is an anti-

symmetric relation on A if and only if when-

ever aRb and biles then a = b.

(a) Which of the relations in Exercise 3 above ere

anti-symmetric?

(b) Which of the relations in Exercise 8 above ere

anti-symmetric?

(c) Which of the relations in Exercise 10 above are

anti-symmetric?

(d) Which of the relations in Exercise; 12 above are

anti-symmetric?

8.13 Equivalence Cla.sses and Partitions

Examine the drawing below in which we have drawn a closed

curve about a set of eleven geometric figures. Designate this

set of figures as G.

63



58

64

b.4

Not all of the figures have the same number of sides. In fact

there are four 3-sided figures (i.e., 4 triangles), four 4-sided

figures (i,e., 4 quadrilaterals), two 5-sided figures (i.e. 2

pentagons) and one 6-sided figure (i.e., 1 hexagon).

We define a relation R on the set G as follows: If x and

_mare any elements of G we say that xRy if and only if ;c and .y

have the same number of sides.

Thus any two triangles in G are in the relation R to each

other whereas a triangle and a quadrilateral are not in the

relation R to each other.

Because every geometric figure in G has the same number of

sides as itself, we see that R is reflexive on G. If x has the

same number of sides as 2, then y has the same number of sides

as x. Hence, R is symmetric on G. Also if x has the same number

of sides as i and has the same number of sides as z, then x

has the same number of sides as z. Thus R is transitive on G.

From the above we conclude that R is an equivalence relation on G.

Now examine the effect of the equivalence relation R on the

set G. It is important to note that the relation R effects a.

separation of the elements of G into disjoint subsets. Each of

these subsets contains exactly those geometric figures which
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have the same number of sides. (See how this is indicated in

the drawing above.) Designate these subsets of G as T (the set

of triangles), Q (the set of quadrilater', .$), P (the set of

pentagons), and H (the set of hexagons). The collection of

subsets of G

T, Q, H)

produced by the equivalence relation R on G is called a part-

ition of G.'

The subsets which form the partition of G have two important

properties:

Property 1: The union of the subsets T, Q, P, and H of G is

the set G. That isTUQU Pull= G

Property 2: The subsets T, Q, P, and H of G are pairwise

disjoint. This means that the intersection

of any two distl.nct subsets is the empty set.

This is true because a geometric figure cannot

be both a triangle and a quadrilateral. Hence

T fl Q = 0. Similarly T fl P = T fl H = 0,

Q n H 0, and P n H = 0.

It is no accident that R effected a partition of G into pairwise

disjoint subsets whose union is G.. We obtained such a partition

of G because R is an equivalence relation on G. The most signif-

icant property of an equivalence relation on a set is that it

always partitions the set into pairwise disjoint subsets whose

union is the given set.

We could also say that an equivalence relation R on a non-

empty set A partitions the set by putting those elements which
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are related to each other in the bame subset of A. Each of these

subsets is called an equivalence class. In the example above

T, Q, P, and H are equivalence classes. The following examples

will illustrate many of the ideas examined above.

Example 1: Let us define a relation R on the set Z of

integers as follows: Let x and ybe any two

integers. We say xRy if and only if both x

and z are even or both x and areare odd. Note:

Zero is even. Thus -3R7 but -3g8. The re-

lation R is an equivalence relation on Z.

(Prove this.) Moreover the relation R estab-

lishes two subsets of Z:

E = (x: x E Z, and x is even) and

0 = (x: x E Z, and x is odd).

Every integer in Z is either an element in E or

an element in 0, but never an element in both

E and 0.

(i) E U 0 = Z, and

(ii) E n o = 0.

The equivalence relation R Z effects a

-artition on Z. This partition is (E,0). E

and 0 are equivalence classes in this partition.

Exam: e 2: Let A = (1,2,3,4,5,6,7,8,9,10,11,12). We define

a relation R on A as follows: Let a and b be

any elements of A. We say aRb if and only if a

and b have the same remainder when they are

divided by 4. It is easy to see that R is an
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equivalence relation on A which determines the

following subsets of A:

= (1,539), PO = (2,6,10), B3 = (3,7,11),

= (4,8,12).

We note that B1 U B2 U El U B4 = A and also

that Bi n Bp = 0, Bs n Boj = 0, B1 n B4 =
1311 n Be = 0, BR n B4 = 911, B3 n B4 = 0%

Thus R effects the partition (E11,132,B3,E4) on A.

Example 3: Let C be the set of students in a class. It is

clear that the relation "has the same first

name as is an equivalence relation on C. Further,

this relation partitions C into equivalence

classes. (Examine your own class.) It could

happen that every student had a different name.

If in such a class there are twenty students we

find that the equivalence relation still parti-

tions the set. Here each equivalence class would

have in it a single element. Thus, the parti-

tion would be a set having twenty equivalence

clauses as elements.

Example 4: Let A = (0,1,2). We find that there are five

different possible partitions of A. These are,

(i) ( (0,1,2) )

(ii) ( (0), (1,2) )

(iii) ( (1), (0,2) )

(iv) (2), (0,1) )

(v) (0), (1), (2) )
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Each of the five sets above is a partition of A.

Again we see that the elements of a partition

are sets. In (ii) the elements that make up

the partition ( (0), (1,2) ) are the equivalence

classes (0) and (1,2). We observe that

(0) U (1,2) = (0,1,2) = A. Also (0) n (1,2) = 0.

Similar statements are possible for (i), (iii),

(iv), and (v).

Example 5: Let P be set of all people in the United States

and let T be the relation on P defined by "has

the same type blood as." he saw in Section 8.13

that T is an equivalence relation on P. Hence

T partitions P into equivalence classes. These

equivalence classes are called "blood groups."

We are seldom interested in a set unless some relation or

operation has been defined on the set. In this section we have

seen ;hat defining an equivalence relation H on a set A yields

a partition of A into equivalence classes. We might say that

the relation R on A gives a "structure" to the set A. Of course

different relations defined on A yield different structures. We

shall encounter many ways of structuring sets. The study of

structures on sets is considered by some mathematicians to be the

very essence of mathematics itself.

8.14 Eercises

1. Let A = (1,2,3,4,5,6). Explain why each of the following

is or is not a partition of A.
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(1,2), (5,6,3) )

(1,2), (3), (4,5), (6,2) )

(c) ( (1,3,5), (2,4,6) )

(d) ( (1), (2), (3), (4), (5), (6) )

(e) ( (1), (6,4), (3,5,2) )

( (1,2,3,4), (4,5,6) )

(g) ( (1,2,3,4,5,6) )

(h) ( (1,2), (3,4) )

2. Find all the partitions of (1,2).

3. Explain why "<" defined on W does not partition W.

4. Let R be an equivalence relation on A. If we assume that

cRa and cRb, why can we conclude that aRb?

5. Find all the partitions of (1,2,3,4).

6. Let S be the set of all lattice points in the plane and

let R1 and R2 be relations on S defined as follows:

R1: "has the same first coordinate as"

R2: "has the same second coordinate as"

(a) Show that both R1 and R2 are equivalence relations on S.

(b) Describe the equivalence classes into which S is

partitioned by each of the relations R1 and Ry.

7. Consider the following relations defined on the set P of

people in the United States:

RI: "lives in the same state as"

Re: "lives within 1 mile of"

R3: "is the father of"

R4: "is a member of the same political party as"

Rs: "has the same I.Q. as"
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(a) Determine which of the above are equivalence relations

on P.

(b) Describe the equivalence classes in the partititions

effected by the relations in (a) which are equivalence

relations on P.

*8. Research Problem: Let R be an equivalence relation on A.

For every a E A, let

B
a
- (x: xRa)

Prove that these sets B
a

are the equivalence classes in

the partition of A effected by R.

*9. A partial ordering of a set A is a relation on A which is

(1) reflexive, i.e., for every a E A, aRa

(2) anti-symmetric, i.e, for all a, b E R, aRb

and bRe implies a = b.

(See Exercise 14 in Section 8.14.)

(3) transitive, i.e., for all a, b, c E R, aRb and bRc

implies aRc.

(a) Let S be the collection of all subsets of (1,2).

Show that the relation "C" defined on S is

partial ordering of S.

(b) Draw the arrow diagram for this relation. Try to

describe a general property which the arrow diagram

for any partial ordering relation must have.

*10. (a) Use an arrow diagram to illustrate the relation "divides"

on the sc. E = (1,2,3,4,5,6). Is this relation a

partial ordering on E?

(b) Explain why the relation "<" is or is not a partial

ordering of the set W.
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8.15 Summary

In this chapter you have encountered some of the most basic

terms used in the study of mathematics. Terms such as set, rela-

tions equivalence class, partition, etc. will become part of your

basic vocabulary.

With respect to sets you should be able to give a clear and

complete description of the following terms:

set equality, subset, proper subset, universal set, union,

intersection, empty set, complement, disjoint sets, Cart-

esian product set.

With respect to relations you should understand what is

meant by the following terms:

relation, reflexivity, symmetry, transitivity, equivalence

relation, partition.

Also you should be aware of the tools we have used in our study.

These tools include:

set notation, Venn diagrams, arrow diagrams.

At this time you should review for yourself the meanings of

the above terms. Restudy any terms whose meanings are not clear

to you.

8.16 Review Exercises

1. Let S be a universal set where S = (-3,-2,-1,0,1,2,3).

Let A = (-3,-2,-1,0) , B = (1,213), C = (-3,-1,1,3) , D = (0).

(a) Determine the following sets:

(1) A U B (5) B U C (9) D U D
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(2) A n B (6) B n c (10) B n B

(3) A U C (7) A U D (11) s n D

(4) A n C (8) A n D (12). S U D

(b) Find the complement of each of the following sets:

(3) C (5) A U D

(4) A n c (6) A B

(c) Which of the sets A, B, C, D are

(1) subsets of the other?

(2) proper subsets of the other?

(3) pairwise disjoint?

2. Write three statements that are true of each set A.

3. Let B = (x: x E W and x is even end x < 3).

(a) Rewrite set B by listing its elements.

(b) List all the subsets of B.

(c) List all the proper non-empty subsets of B.

(d) Determine B x B.

(e) Is ((0,0), (0,1)) a relation on B?

(f) Is ((0,0), (0,2)) a relation on B?

(g) Draw an arrow diagram for B x B.

4. Let V = (0,1,2,3). Let R be a relation on V defined as

follows:

R = ((0,0), (0,1), (1,0), (1,2), (2,1), (2,2), (0,2), (3,3))

(a) Draw the arrow diagram for R on V.

(b) Is R an equivalence relation on V?

(c) What would occur if we defined a new relation S on

V where

S = R U ((1,1), (2,0))?
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5. (a) Prove or disprove that (A n B) U (An 13) = A

(b) n B) u nff) u (A n B)

6. Give an example of a relation R on a set A which is,

(a) reflexive and transitive, but not symmetric.

(b) reflexive, symmetric, and transitive

(c) neither reflexive, nor symmetric, nor transitive.

(d) transitive but neither reflexive nor symmetric.

(e) symmetric and transitive but not reflexive.

7. Determine which of the following are true:

(a) If A c B, then A c E.

(b) If A c B, then E

8. Let D = (2,4,6,8,10,12).

Explain why the following are or are not partitions of D:

(a) ( (2,4), (6,10), (4,12), (8) )

(b) ( (2,4,6), (8,10), (12) )

(c) ( (2), (6,12), (4,10) )

9. Let B ° C = B n C. Prove or disprove that

A n (B ° n B) n (3).
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CHAPTER 9

TRANSFORMATIONS OF THE PLANE

9.1 Knowing How and Doing

Have you ever read a book on how to roller skate or ride a

bicycle? Do you think you could have done well on roller skates

or on a bicycle the very first time you tried merely because you

have read the book? Knowing how is not quite the same as being

able.

In this chapter you will be given a chance to do many things

as well as to learn about them. In order to do these things you

will need some equipment in addition to pencil and paper. At the

beginning of each section you will be told what equipment you

will need. Obtain this equipment before going further so that

you can read and follow without interruptions.

9.2 Reflections in a Line

Materials needed: Paper without lines, tracing paper, ink,

pen, two small rectangular mirrors, and

a compass.

Activity 1: Fold one unlined sheet of paper down the middle.

Open up this folded sheet and put one drop of ink in the crease

and one drop of ink about an inch away from the crease.

Figure 9.1
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Close the paper carefully to spread the ink about, keeping the

ink within the folded paper.

Now open up the paper. Look at the ink spots on both paper

halves. How do the ink spots compare in size and shape?

Now fold one half back and replace it by a mirror in an up-

right position so that the edge of the mirror fits into the

crease. How do the images you see in the mirror compare with the

ink spots you folded back?

Put 2 more ink drops on one half cf your paper and repeat

the steps cf the preceding paragraph. Compare the distance be-

tween any 2 ink spots on one paper half with the distance for the

corresponding 2 ink spots on the other. Are they the same? What

generalization seems to hold for the two paper halves? The ink

spot figure on one paper half is called the reflection in the

crease of the other ink spot figure.

After the ink dries, place a piece of tracing paper care-

fully over the ink figured sheet. Then trace one of the ink spot

figures. What must you do to the tracing paper to get a picture

of the reflection of the figure you traced? Test your solution

with another ink spot figure.

In previous chapters we have learned that a mapping makes

assignments. For example, the successor mapping, S, assigns to

each integer the next larger integer.

n + 1

A reflection in a line is also a mapping since it assigns points

to points on a plane. Restricting ourselves to a fixed plane, a

reflection with respect to a fixed line assigns to each point its
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mirror image or reflection in the given line. The next activity

suggests important properties of reflection mappings.

Activity 2: Fold an unlined sheet of paper down the middle.

Open up the folded sheet and place a heavy dot off the crease

line; label the dot "A."

Figure 9.2

crease m

Where do you think the reflection of A in m will be?

Now close the paper again folding from left to right with

the paper positioned as in Figure 9.2. Dot A is now inside, but

you should be able to see it through the paper. Use a pen cr

pencil to go over the dot heavily. Opening up the paper, you

should now be able to see a mark for the true image of A. Label

the reflection of A in m, A' . How accurate was your guess about

the location of A'?

Place another dot, B, and guess where its reflection in m

ought to be. Now find the image of B under the reflection in m

just as you found A' . Call the image of B, B' .

Draw a line segment between A and B, A' and B'. Using an

opening of your compass, check to see whether the length of seg-

ment AB is the same as the length of segment A'B'. (Henceforth,

we will use the symbol "AB" to mean "the length of segment AB.")
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B' f B

Figure 9.3

Place another point on the same half, call it "C,." and try

to guess where its reflection in m, CI, is. Check by folding on

m. Compare the length of AC with r-ol and of BC with B'C' . Do

your measurements support the generalization for Activity 1?

Join A to A' and mark the point where the line drawn crosses

m, "AI" (read: "A one"). How do the lengths of ATI and ArT1

compare? Join B to B' C to C' crossing m in B1 and CI, respec-

tively. How do BB1 and trIfi compare in length? CC1 and CrUi?

What generalization might you make from these observations?

The mapping with respect to a fixed line, m, that takes

every point into its mirror image (such as A into A'), is called

a reflection in m. You noticed above that the length of AS was

the same as the length of MT, the length of M was the same as

the length of AlT , and the length of SC' was the same as the

length of 971. The mapping which assigned A to A', B to B', and

C to C' was such that the distance between any two points of its

domain was the same as the distance between the images of these

points in the range. A mapping like this, which preserves dis-
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tances, is called an isometry ("iso" means equal, "metry" means

measure). Do you think that every reflection is an isometry? Is

every isometry a reflection?

Figure 9.4, which illustrates the directions given above for

the reflection mapping, is said to be symmetric with respect to

line m. m is called a line of symmetry of the figure.

Im

Figure 9.4

What is a line of symmetry for the following kite figure?

Figure 9.5



- 73 -

How many lines of symmetry does a rectangle have? A square?

A circle? (A line of symmetry need not itself be a part of the

given figure.)

Returning to the original sheet, illustrated by Figure 9.4,

join Al to B and B' . Compare Al B with Ai B' . Join AI to C and

C' . Compare AiC and AI C' . Join any other point, P, on the crease

m to A and A', C and CI. What seems to be true about the dis-

tances of any point on m to a point and its reflettion?

Your observations should lead you to believe that a line re-

flection is an isometry, and that a figure together with its re-

flection is symmetric with respect to the line of reflection.

Activity 3: Fold an unlined sheet. Open up the sheet and put a

dot on one side of the crease; label it "A."

croon (c)

.A

Figure 9.6

Simply by folding this paper, try to locate the reflection of A

in m. Some hints are:

(1) Fold back along the crease, and then fold back at A as

shown in this figure.

Figure 9.7
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Can you finish now?

(2) Fold back once again at A.

A

and ape,. up
to show all
the creases.

A

13

Figure 9.8

Where is A'? Find B' the same way.

Activity 4: We shall now see how to obtain the reflection of a

point in a line without folding. First try to figure out a way

yourself. There are many ways of doing it. You will probably

need your compass.

One method of finding the reflection of a point A in m is to

think of the kite figure. Find 2 points in m, call them P and S,

and think of PAQ as half a kite figure.

PaL,

A

m

Figure 9.9

Our previous observations lead us to believe that A', the image of

A, is just as far from P as A is from P, and that A' is just as far
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from Q as A is from Q. If we draw a circle with P as center and

radius of length PA, then At must be someplace on this circle.

A' is someplace
on this circle

Figure 9.10

A' must also be on a circle with center Q and radius QA.

A' is someplace
on both of these
circles. What
point is A'?

Figure 9.11 81
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Join A' to P and Q to complete the kite figure

Using this method of obtaining reflections, find the re-

flections of points A, B, C if A, B, C are on the same line with

B between A and C.

m

A

Figure 9.12

Are the image points A', B', C' also on a line? Is B' between A,

and CI? What generalizations are suggested by your observations?

Suppose D is taken as the midpoint of AC, what is your guess

about D'? Check your guess with a compass.

Your observations should have suggested to you that a re-

flection maps collinear points into collinear points preserving

betweenness. That is, if P, Q, R are points on the same line, £,

then their images PI, Q1, R' are on the same line £' . If Q is

between P and R, then Q' is between P' and R'. In fact, the mid-

point of a segment is mapped into the midpoint of the image of

this segment.

9.3 Exercises

1. Which points in a plane are their own images under a line

reflection?

2. If you hold a pencil in your right hand, which hand does it
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look like in the mirror?

3. If you spin a top clockwise, what does it seem to be doing

in the mirror?

4. If points A', B1, C' are the images of points A, B, C under

a reflection in m, what are the images of Al, B1, C' under

this reflection?

A

C

5. Copy the diagrams and draw the reflection in m of the line

segment Arin each case.

(a) ( b)

A

A

(c)

8

m

6. Copy the diagrams and draw the reflection in m of ray Arin

each case. (Ray AB is the halfline starting at A and pass-

ing through B.)

(a) (b)

m

83
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7. Copy the diagrams and draw the reflection in m of line AB.

(0)
(b)

8. Copy the diagrams and find all lines through A that are

identical with their reflections in m:

(a) .A (b) A

m m

9. Do Exercise 8 by creasing a paper on which m and A are shown,

if you did not use this method in Exercise 8.

10. Fold a sheet of paper down the middle and draw some picture

as shown here. Cut along the line you drew and open up.

What do you notice?

11. Which printed capital letters frequently have a line of sym-

metry? Will the reflection of these letters in any line be

the same letters?

12. Try writing your name so that it reads right in a mirror.
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13. Place a sheet of carbon paper under a sheet of paper so that

the carbon faces the back side of your paper. Write your

name. Look at the back side of your paper in a mirror.

What do you see?

14. For this exercise you will need a pad, 2 pins, and a mirror

ul
about

2
wide and at least 6" long.

Pad

Mirror -
(upright on pad

Pin (P)

Secure the mirror in an upright position on the pad. (Brace

it with a book, or fasten it with pins, scotch tape, or ad-

hesive tape.) Stick a pin upright into the pad about 2" in

front of the mirror. Place your eye close to the pad so

that you can see the image of the lower part of the pin, P,

in the mirror. Try to place the other pin, P' , so that it

will always line up with P and the image of P you see in the

mirror no matter how you change your line of vision. Where

is P' in relation to P? Your pin, P', should be located at

the reflection of P in the mirror. P' is now the image of P

under a reflection in the mirror. This close analogy be-

tween a reflection mapping and reflections in a real mirror

is the reason for using the words "reflection" and "image."

15. By folding your paper, find the line m, for a reflection

that will map
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(c) SR onto ST,

R T
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(b) AB onto itself,

A

(d) Line-IWTonto line57
(There are 2 lines m)

(e) In each of the above exercises what can you say about

the crease?

9.4 Lines, Rays and Segments

Although we picture a line as a taut string, as the edge of

a molding, as a mark on the blackboard or paper, we must recog-

nize that these things are quite inaccurate as representations of

a line. For example, a string may sag or have a "belly." A

string has thickness. A string does not go on and on in both di-

rections endlessly. However, a line has no "belly," no thickness,

and does go on endlessly in both directions. But how can we do

any better? A line is an idea (like a number), while a physical

representation is a thing (like a numeral) used to denote the

idea. The marks we call "lines," only represent lines yet we con-
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tinue to refer to the marks as "lines" because we are not really

concerned about the marks but about the ideas the marks represent.

If "A" and "B" name two points of a line then 77grnames the

line containing A and B. We assume that there is only one line

(our lines are always straight) that contains two different

-4-0-
points. AB and BA are the same line.

A

Figure 9.13

We often place arrow heads at the ends of our marks to remind us

that the lines are endless in both directions. Sometimes, we

place a letter near the mark and refer to the line by the letter.

Consider a line m and a point P in this line:

P

Figure 9.14

The set of points in line m to the right of P, together with P,

is a ray. The set of points in m to the left of P together with

P is also a ray. Point P is called the endpoint of both rays.

Any point, P, in a line together with all the points of the line

that are on the same side of P, constitute a ray.

We often name a ray by two capital letters. The left letter

names the endpoint of the ray and the right letter names any

other point of the ray. An arrow pointing to the right is placed

over both letters.
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S

Figure 9.15

If P and Q are two points on line m, PQ and Tr are different rays.

They overlap on a set of points containing P, Q and all the points

between P and Q.

.......
overlap of PQ and Ttir

Figure 9.16

The overlap of PQ and QP is the segment PQ (or QP).

9.5 Exercises

1. Let A, B, C be any 3 points that are not on the same line

(non-collinear points). Draw all the lines you can, each

containing two of these points.

(a) How many lines did you get?

(b) Name the lines.

(c) Name each of these lines another way using the same

letters.

2. Let A, B, C, D be any 4 points, no three of which are col-
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linear. Draw all the lines you can each containing two

points.

(a) How many did you get?

(b) Do the same thing for 5 points, no 3 of which are col-

linear.

(c) Copy the table below, fill in the blanks, and try to

discover a pattern that you feel should continue.

NumberofPoinh 2 3 4 5 6

Number of Lines

(d) Try to give an argument to support your generalization.

A

(a) Name the line shown in as many ways as you can uaing

the names of the given points. There are 12 possible

ways.

(b) Name all the different rays you can find in the figure.

Note WT, AC, AD are all the same ray.

(c) How many different rays did you find?

(d) Copy the table and fill in the blanks.

Number of Points on o Line 2 J 4 5

Number of Rays

(e) Try to discover a pattern that you feel ought to continue.

(f) Try to give an argument to support your generalization.

(g) Name all the segments formed by points A, B, C,

(h) How many different segments did you get?
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(i) Copy the table and fill in the blanks.

Number of Points on cab* 2 3 4 5 6

Number of Segments

(j) Try to discover a pattern that you feel ought to con-

tinue.

(k) Try to give an argument to support your generalization.

9.6 Perpendicular Lines

In one of the exercises you were asked to find a line, n,

through A that is its own reflection in m. Your line should look

like the one in Figure 9.17. Whenever we have two lines such

that either is its own reflection in the other, we say that

n A' A

m

Figure 9.17

these lines are perpendicular to each other. We use the symbol

"i" for "perpendicular" or "is perpendicular to." For Figure

9.17, we have min and nip.

If B and B' are two points, each the reflection of the other

in line m, thenlYrim, and mffilr.

e'

m

Figure 9.18
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We often indicate in a drawing that 2 lines are perpendic-

ular by a little square where the lines cross.

B'

m

I FL K-M

K

Figure 9.19

Line segments which are in perpendicular lines are said to

be perpendicular. Rays which are in perpendicular lines are said

to be perpendicular. In fact, any pair such as ray and segment

or line and ray are perpendicular if they are in perpendicular

lines. We continue to use ".1! for any such perpendicularity.

9.7 Rays Havin the Same Endpoint

In this section we shall be dealing with rays that have a

common endpoint.

?rand PB are rays with the same endpoint, P.

A

P "

B

Figure 9.20

If two rays with the same endpoint constitute a line, they

are called opposite rays,. The rays RC and ware opposite rays.

D R C

Figure 9.21
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An interesting property of a pair of rays with common end-

point is the measure of the angle these rays determine. In Figure

9.20 rays frand PB determine a relatively small angle. In Figure

9.22 rays TO-and 54rdetermine a much larger angle.

If we were given two such pairs of rays with a common end-

point, how could we compare the measures of the angles they de-

termine? To see when such information would be useful, consider

the following situation.

Mom makes delicious pies of uniform thickness. She is very

skillful at cutting sections from the center. When you get home

one day you see these two pieces in a pan.

Pan

Figure 9.23

Segments

1-27, and
fer are
all the
same

length.

Which one would you select if you want the larger piece? You may

want to use your compass to help you decide. How might you use

it? Think about this question a moment before reading on.

If you thought of comparing the distance from S to T with the
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distarice from S' to V, then you have anticipated the text.

These measurements were intended to be identical, although the

left piece may look larger.

Using this example as a clue, how could you decide which of

the fallowing pair of rays determines the greatest angle?

Figure 9.24

Is it the pair of rays at A? at B? at C? Which pair of rays

determines the smallest angle?

One way of telling is to draw an arc of a circle across each

ray, using in turn points A, B, and C as centers. Each arc should

have the same radius (or opening of your compass). After the arcs

are drawn, compare the distance between intersection points just

as you did for the pie. You will find that AlAa > B1 B2, and

Al Ala < Ci Ca

C

Figure 9.25
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This shows that the measure of LC is greatest, the measure of LB

smallest, and the measure of LA intermediate.

In Chapter 10 you will measure angles using a protractor, an

instrument designed specifically for measuring angles.

Activity 5: On a sheet of unlined paper, draw line m and a pair

of rays Pr and g' as shown:

/A"

m

Figure 9.26

Find the reflections PIA' and P'B' of the rays PA and PB in

m. Guess how the angles formed at P and at P' compare in meas-

ure. Check your guess with a compass. Then repeat the experiment

with rays meeting in a different angle. What generalization seems

to hold?

Ay y 6: On a sheet of unlined paper draw line m and join

the non-collinear points A, B, C. The figure formed is called

"triangle ABC." Find the reflection of triangle ABC in m.

C

m

Figure 9.27
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Compare the angles at A, B, and C with those at A', B', and C'.

Then compare the lengths of AB, AC, and BC with the lengths of

A'B', A'C' , and B'C'.

Cut out triangle ABC.. See if you can make it fit on Al B' C' .

Did you have to turn ABC over before making it fit? Will it

always be necessary to turn over? If not, when will it be

unnecessary? Try this experiment again with a different triangle.

Try special kinds of triangles.

Activity 7: Now we are going to make a reflection and then a

reflection of the image of this reflection, but in a different

line. Draw the following on your unlined paper: triangle ABC

and parallel lines m and n.

A

C

m

Figure 9.28

Find the reflection of triangle ABC in m. Call it triangle

A' B' C' . Now find the reflection of triangle PVC' in n. Call

this new figure triangle A"B"C". Try to make some generalizations

about the triangles ABC, A'B'C', and A"B"C". Cut out the three

figures. Do they fit? Should they fit? Why do you think so?

Which triangles can be made to fit without turning over?
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9.8 Exercises

1. (a) Copy the diagram shown and find the line containing

point A that is perpendicular to line m. You may try

folding your paper.

A

(b) Suppose now that A is on m. Copy the diagram below

and find the line containing point A that is perpen-

dicular to m. You may want to try folding your paper.

A

m

(c) Try to do (a) and (b) without folding.

2, (a) What can you say about a triangle that has exactly one

line of symmetry?

(b) Can you find a triangle that has just two lines of

symmetry?

(c) Can you find a triangle that has just three lines of

symmetry?

(d) Are there triangles that have more than three lines of

symmetry?
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(a) Find the reflection of triangle T in m, call it "Tm",

and the reflection of Tm
in n, call it "Tmn

", and

finally, the reflection of Tmn in m, "Tmnm", Compare

T, Tm, Tmn, Tmnm.

(b) Carry out the same steps with m and n perpendicular

lines. What can you say now that seems to be true?

4. What is wrong in each of these cases?

(a) The distance from A to B is less than the distance

p2. 0

from C to D. Hence, the angle at P is smaller than

the angle at Q.

(b) If two triangle cutouts fit then three pairs of angles

(one from each triangle) must have the same measure.

Hence, if the measures of pairs of angles for two

triangles are the same, their cutouts should fit.

5. Why are comparisons difficult for the angles formed by rays

that are close to being opposite rays?
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6. (a) If the distance from A to B is twice the distance from

C to D, would you say that the measure of the angle at

P is twice the measure of the angle at Q?

(b) Compare the measure of an angle determined by two

opposite rays and the measure of an angle determined

by a pair of perpendicular rays. Is the first measure

twice as large as the second?

9.9 Reflection in a Point

Does the parallelogram below hams a line of symmetry?

Figure 9.29

In other words, is there a line for which the parallelogram

and its mi:'ror image in this line are the same set of points?

After some experimentation, including folding, you will

probably say that this parallelogram has no line of symmetry;

there is no line reflection that leaves the parallelogram un-

changed. However, as we shall soon see, the parallelogram does

have a kind of symmetry; it is always symmetric in a point. Try

to guess what symmetric in a point means.
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Materials needed: Pencil, unlined paper, tracing paper,

compass.

Activity 8: Let A, B, and C be points on line L. Let P be

any Other point (not necessarily on I). Draw ray Irand locate

point A' on ray AEI so that P is the midpoint of AA'.

B

Figure 9.30

We call A' the image of A under the reflection in P. In the same

way, find the image of B and C under the reflection in P, calling

the images B' and C' respectively. Your figure should resemble

Figure 9.31.

Figure 9.31

Are the points A', B', C' also collinear? Is C' between

A' and B' ? How does the distance from A to B compare with the

distance from A' to B' ? Compare the length AC with A' C' and

BC with B' C'. What conjectures would you make from this activity

regarding: collinearity of points, betweeness, isometry? Try
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to find a single line in which a reflection maps A into A' and

B into B' .

The above activity should have suggested to you the follow-

ing:

1. Just as a reflection in a line is a mapping of all the

paints of the plane onto all the points of the plane,

reflection in a point is also a mapping of all the points

of the plane onto all the points of the plane.

2. Both mappings, reflection in a line and reflection in a

point:

(a) are one-to-one,

(b) are isometries,

(c) map collinear points onto collinear points,

(d) preserve betweeness.

What other properties would you conjecture? Perhaps

the next activity will suggest some others.

Activity 9: Find the image of triangle ABC (usually written as

HAABC" ) under the reflection inP. Call it AA' B' C' where ,

op

A

Figure 9.32

Compare the angles at A, B, C with the corresponding angles at
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A,, B', cl. How do the lengths AB, BC, and AC compare with A' Bo,

B'C' and A'C' ? What additional conjectures would you now make

that have not been mentioned regarding the image of a line, ray,

and segment under reflection in a pant? What conjecture would you

make regarding the angle determined by two rays and the angle of

their images under reflection in a point?

Have you thought of these:

3. Reflection in a point, just as reflection in a line:

(a) maps segments onto segments,

(b) maps rays onto rays,

(c) maps lines onto lines,

(d) preserves the measure of the angle formed by two

rays.

Cut out AABC and AAIBIC1. Try to notice exactly what you

have to do to make one triangle fit on the other. Do you have

to turn one over before they will fit? Recall that for reflec-

tion in a line it was often necessary to turn over the figure

or its image to obtain a fit.

Materials needed: Pencil, lined paper, unlined paper,

compass.

Activity 10: The lines of your lined paper are parallel lines.

If two lines are in the same plane and do not cross, the lines

are parallel. What happens to parallel lines under a reflection

in a line and reflection in a point?
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A P

Figure 9.33

Draw two parallel lines and point P as in Figure 9.33.

Find the image of'Iltunder a reflection in P; call it NV . Does

it seem thatIrand l'F4 are parallel? If they are parallel

(let us abbreviate our writing by using the symbol "11" for

"is parallel to") we haveir31 ITT". Find the image of

-4Zrunder a reflection in P, calling the imagetr51r. Is-tl-ril677r?

What conjectures would you be willing to make now?

Next draw three lines: -717'111n-rand m as shown in Figure

9.34.

A

Figure 9.34

Find the reflections of the parallel lines-ltrand-V-in m.

Are the reflections parallel? Is parallel to its reflection

in m? Have you made any of these conjectures?

1. A line maps onto a parallel line under reflection in a

point.

2. Two parallel lines map onto two parallel lines under

reflection in a point and reflection in a line.
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3. The image of a figure under a reflection in a point

is a rotation of the figure through a "half turn".

a'

Figure 9.35

9.10 Exercises

1. What point is its own image under a reflection in point P?

2. Is there a point P in which a reflection will map each of

the following figures onto themselves? (If there is, shole;

its location.)

(a) a line segment

(b) a ray

(c) a line

(d) a pair of parallel lines

(e) a parallelogram=7
(f) the letter Z

3. If there is a point in which a reflection will map a

figure onto itself, we say the figure is symmetric in a

22int. If there is a line in which a reflection will map

a figure onto itself we say the figure is symmetric in a

line. For each printed capital letter in the English
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alphabet, decide whether it is symmetric in a point or in a

line or neither.

Symmetric Symmetric
Letter in a Point in a Line Neither

A No Yes

B

C

4. Is there a line, m, in which a reflection will map each of

the following figures onto itself? (If there is, show it.)

(a) a line segment

(b) a ray

(c) a line

(d) a parallelogram

5. Using unlined paper and your compass and ruler obtain a line

parallel to m. Hint: Find the image of m under the reflectio

in P.

P

m

10
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6. Try to find a way of obtaining a line through P parallel

to m (See Exercise 5):

(a) by folding your paper

(b) without folding but using your compass and ruler.

7. What kind of symmetry does each of the following have?

(a) a picture of a face (1) front view (2) side view

(b) a circle

(c) a square

(d) a rectangle

(e) a picture of a top

(f) a picture of a five pointed star

(g) a picture of a six pointed star

(h) a swastika

(i) a crescent

8. Denote by "Sp" the reflection mapping in point P, and by

"Am" the reflection mapping in line m. Find the image of

ION under each of the following composite mappings:

(a) Lm following Sp

(b) Sp following Am
B

p

A

(c) Am following Am

(d) Sp following Sp

(e) Sp following SQ (f) SQ following Sp

A

O
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(g) Which of the above mappings (a-f) gave an image of

that was parallel to AT? (We say that line segments

are parallel if they are in parallel lines.)

9. If and CD have the same length, find one or more point

refelctions that will map AB onto CD. (You may have to compose

two point reflections.)

A C A

(a) / (h) /
B D B

D

A c

(c)

.%%...\,.....,/ D

B

10. Let r 11 s. Find the image of KR under each of the

following composition mappings:

(a) 4,* Rs (b) Rs0 R,

A

(c) Are the images found in (a) and (b)

(1) the same?

(2) parallel?

(3) parallel to DO
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*
11. Consider the following design; call it T.

Describe how to obtain each of the following designs,

using T or its images under mappings.

P

12. (a) List at least 5 wks in which a reflection in a

line and a reflection in a point are alike.

(b) List at least 2 ways in which they are not alike.

9.11 Translations

In Chapter 3 one of the basic mappings from W to W was the
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translation; that is, the mapping with a rule of the form

n + a.

In Chapter 4 these translations were extended to mappings of

Z to Z. Then in Chapter 7 a two-dimensional translation was

defined from Z x Z to Z x Z.

T
a,b

(x,y) (x + a, y+ b)

Although Ta,b has been defined only for lattice points in the

plane, it can be extended naturally to the whole plane.

Activity 11: On a sheet of lined paper select points A, B, C

as in Figure 9.36.

A

C

B

Figure 9.36

Now locate points A', B!, C' 3 inches to the right of A, B, C

respectively. Compare the distances AB with At Bt, AC with A'C',

BC with B' C'. What can you say about WA' , BB! , CC'? If C were

the midpoint of AB what would you conjecture about CI?

Now choose A, B, C as non-collinear points on different

lines of the paper as in Figure 9.37. Find the image of AABC

under the translation "three inches to the right." Call it

AA'BIC'.

Figure 9.37 108
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Compare the angle at A with that at AI, the angle at B with

that at B', the angle at C with that at . What generaliza-

tions would you be willing to make for translations regarding:

isometry, collinearity, betweeness, midpoints, parallelism,

angles? Carry out some other activity to check some of your

conjectures.

You may have thought of the following generalizations:

A translation

(1) is an isometry;

(2) maps line segments onto parallel line segments;

(3) preserves collinearity, betweeness and midpoints;

(4) preserves parallelism and angle measure.

A translation need not have a magnitude of just three

units and a direction only to the right. A translation may have

a magnitude of any number of units and any fixed direction.

There are infinitely many directions possible for a translation.

Because we have the lines of our lined paper so handy, we shall

be translating often to the right or left. However, one could

always turn the paper so that a translation is along the parallel

lines of our paper.

Activity 12: In the lower left hand portion of a piece of

&racing paper copy the arrangement of points given in Figure

9.38.

A

E

Figure 9.38
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Next, using the parallel lines of a sheet of lined paper as a

guide, find the images of A, B, C, D, E under the translation

"four inches to the right." Then turn the lined paper so that

the lines are vertical. Using these lines as a guide, find

the images of A', B', C' , D', E' under the translation "two

inches up." Compare the lengths of AB and 777, BD and Err,

AE and TITT, CD and 757T. Compare the lengths of -ATT31 and

C'D' and 77, and WE' and 17r.

Next, draw AA", BB", CC", DD", and EE". What happens

when horizontal and vertical translations are composed? Try

to compose two other translations which are not in perpendicu-

lar directions.

Your experience in Activities 10 and 11 should have dem-

onstrated the fact that a translation mapping can be defined

for the whole plane by simply giving a magnitude and a direc-

tion. The identity mapping, that is the transformation that

means each point onto itself, is also considered a translation

--one with magnitude zero.

9.12 Exercises

1. Which points, if any, are their own images under a

translation?

2. Which of the following sets remain the same under some

translation? Describe the translation(s).

(a) a segment
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(b) a ray

(c) a line

(d) a plane

(e) a half plane

3. Many designs are made by a succession of translations.

You can make a face design by doing the following:

(a) Draw a face on a blank sheet, about the size

shown here, near the left edge of your paper.

(b) Place a piece of carbon paper face down on

another blank sheet.

(c) Mark off 2" intervals along the upper and lower

edges of the paper under the carbon.

(d) Line up the paper containing the face figure with

the other paper.

(e) Trace over the face figure with pencil.

(f) Move face sheet 2 inches to the right using the

marks you made as a guide and trace over face again.

(g) Move face sheet 2 inches again to the right and trace

face again.

(h) You should be able to get 4 or 5 faces on your paper

this way.
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(i) Try to describe the 4 or 5 faces in terms of trans-

lations.

4. What happens when you use the same

(a) line reflection over and over on a figure and its

image?

(b) point reflection over and over on a figure and its

image?

9.13 Rotations

We have already observed that a point reflection applied

to a figure corresponds to giving the figure a half turn..

Figure 9.39

If we start with the figure to the left of P and apply the point re-

flection S we obtain the figure to the right of P. If we start

with the figure to the right of P and apply Sp we obtain the fig-

ure on the left of P. The entire figure above (the original F

and its image under S ) is symmetric in P. But how would you re-

gard the following figure?
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Figure 9.40

Is it symmetric in a line? in a point? It seems to have some

kind of symmetry: If we rotate the figure of a complete rota-

tion, we obtain the very same figure. Also, starting with any

single F we can obtain the other two by rotating the figure

through a turn twice. This suggests mappings which are

rotations about some fixed point. A rotation in a point maps

every point of the plane onto a point of the plane. What is

needed to specify a rotation mapping?

We shall say that a figure has a rotational symmetry if

there is a point and a rotation, which is less than a full rota-

tion but not a zero rotation, that maps the figure onto itself.

Both "F" figures above have rotational symmetry. Notice that

the identity transformation may be regarded as a zero rotation,

or as a full rotation.

9.14 Exercises

1. Which of the printed capital letters have rotational

symmetry?
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2. What properties are preserved under a general rotation

like a i turn? Which are not?

3. Let us denote by "PI" a rotation that maps every point
4

of the plane by a i turn counterclockwise about point P.

Which of the following figures are their own images un-

der Pt?

(a)

(b)

square
rectangle

(f)

P is center of a
P is center of triangle with sides

o circle of same length

What kind of symmetry or symmetries does each of the

following sets of points have?

(a) lattice points of the first quadrant

(b) lattice points of the first and second quadrants

(c) lattice points of the first and third quadrants

(d) all the lattice points in a plane

5. The various transformations studied in this chapter can

be combined to give operational systems where the opera-

tion is composition of mappings. Fill in tables (a),

(b), (c), (d) showing composition of mappings. In (a),

(b), and (c), the sets (e, Am) , (e, Am, An, Si,), and

(e, Pt, Pb,, P3) are studied. "e" stands for the identity

114



- 109-

mapping and the mappings in (a), (b), and (c) are

considered to be acting on the square figure shown here:

(a)

e Am

e

Am

(b) (c)

e Rm An Sp

m

Ln

SP

e P4 Pi Fg.

e

4

P3
4

e

In (d), the mappings are considered to be acting on

this equilateral triangle. (All 3 of its sides have

the same length.)

(a)
r, s, t are fixed lines on the plane.

P
S

P2
13

g r Q s 0,

I

P1/3

P2,3

0 r

Q,

P,
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6. In 5(a)-(d), find the inverse for each of the mappings:

(a) /m (b) Sp (c) P (d) P (e) P

7. Which mappings preserve:

(a) distances

(b) collinearity

(c) betweeness

(d) midpoints

(e) angle measure

(f) parallelism

8. Which mappings do not, in general, preserve:

(a) distances

(b) collinearity

(c) betweeness

(d) midpoints

(e) angle measure

(f) parallelism

9. Let us try to extend some of our mappings into 3 dimen-

sions. Describe and try to give examples of the co2res-

ponding symmetry for each of the following:

(a) reflection in a plane

(b) reflection in a line (in space)

(c) rotation about a line

(d) translation in space

10. What are needed to specify each of the following types

of mappings:

(a) a reflection in a line

(b) a reflection in a point

(c) a translation

(d) a rotation

9.15 Summary

1. A reflection in a line is a one-to-one mapping of all the
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points of a plane onto all the points of the plane

preserving:

distance midpoint

collinearity angle measure

betweeness parallelism

A reflection in e line does not preserve direction. If

the reflection of A in m is A', then AK' is bisected by m.

If m is the line in which a reflection is taken, then

each point of m is its own image.

2. A reflection in a point is a one-to-one mapping of all

the points of a plane onto all the points of the plane

preserving:

distance angle measure

colline_krity parallelism

betweeness midpoint

A reflection in a point maps a line onto a parallel

line; it is the same as a half-turn. If the image of

A under a reflection in P is A', then P is the midpoint

of AA'. If P is the point in which a point reflection is

taken, then P is the only point that is its own image.

3. A translation is a one-to-one mapping of all the points

of a plane onto all the points of the plane preserving:

distance angle measure

collinearity parallelism

betweeness midpoint

No point is its own image under a translation which is

not the identity mapping.
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4. A rotation about a point is a one-to-one mapping of all

the points of a plane onto all the points of the plane

preserving:

distance angle measure

collinearity parallelism

betweeness midpoint

The point about which a rotation is taken is the only

point that is its own image, unless the rotation is a

multiple of a complete rotation.

9.16 Review Exercises

1. Fill in the table with "YES," if the mapping always has

the property, and "NO," if it does not.

..,

r).-.....

se rves
PPIng reflection

in a line
symmetry
in a point

translation rotation

distances
(isometry) .

collinearity

betweeness

midpoint

angle
measure

parallelism

2. What kind of mapping and symmetry are suggested by

each of the L51 lowing:

(a)

( b)
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(F)

(h)

3. Which points are their own images under a

(a) reflection in a line?

(b) reflection in a point?

(c) translatinn?

(d) rotation?

4. Which of the following figures may be identical with its

image under one of the four mappingt mentioned in Exercise

3? Explain.

(a) a line

(b) a ray

(c) a line segment

(d) two rays which are not opposite yet share a com-

mon end point

(e) a square

(f) a rectangle

(g) a parallelogram

5. When are two lines perpendicular?

6. What holds for the two lines m and n if

Am o An = An o Am ? 119



-

7. Find all points P which have the same image under both

composite mappings

tm o = Ln o £m.

8. What is the smallest number of line reflections whose

compositions suffice to

(a) map any fixed point A onto a fixed point B?

(b) map any fixed ray onto any fixed ray?

(c) map any fixed line onto any fixed line?

(d) map any fixed line segment onto any fixed line seg-

ment of the same length?

( e) map any AABC onto AA' B' C' if AB = A' B' , AC = Al C' , and

BC = B' C' ?

9. Copy the diagram, and find the reflection of Itin m.

Aie/15.7)1.
tom

10. Copy the diagram, and find the image of AABC under the

re ,'-ion in point P.

GP

11. Copy the diagram again in Exercise 10, and show the effect

of applying Pi, Pit, Pt to AABC. 120



CHAPTER 10

SEGMENTS, ANGLES, AND ISOMETRIES

10.1 Introduction

In previous chapters you have been introduced to many

geometrical ideas which have been studied with the help of

coordinates and mappings, particularly isometries. Ir this

chapter, we shall tie together many of these results, make them

more precise, and extend them to the study of angles.

Since isometries are distance preserving mappings, we shall

look more closely at segments and their measure. Then we shall

consider angles, how they are measured, and their behavior under

an isometry.

We begin by considering some basic properties of lines

and planes that are important for our study of segments and

angles.

10.2 Lines, Rays, Segments
wie

It may seem to you, on reading this section, that we are

making obvious statements and thus wasting time. If so, you

will be confusing the obvious with the trivial. Obvious state-

ments can have great significance. For instance, the statement:

"The United Stated has only one president" is quite obvious, but

its implications for the government and people of the United

States are extremely important.

Our first statement about lines is obvious. It is called
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41,11DcWoly-spinsionanwcri......

the Line Separation Principle and it expresses in a precise way

the following idea: If we imagine one single point P removed

from a line A, the rest of the line "falls apart" into two dis-

tinct portions (subsets). Each of these portions is called an

open halfline. Along each halfline, one can move smoothly from

any point to any other point without ever encountering point P.

However, if one moves along line A from a point in one halfline

to a point in the other halfline, then it is necessary to cross

through point P. See Figure 10.1.

A

Figure 10.1

The mathematical way of stating this principle more precise-

ly is as follows:

Any point P on a line A separates the rest of k into two

disjoint sets having the following properties:

(1) If A and B are two distinct points in one of these

sets then all points between A and B are in this set.

(2) If A is in one set and C is in the other, then P is

between A and C.

One of these open halflines may be designateeg, the other

W. The little circle at the beginning of the arrow indicates

that P itself is not a point of the open halfline. If P is

added to PP then we obtain the halfline, or ray, designated -g

(no circle at the beginning of the arrow). You should be able

to name two open halflines of A in Figure 10.1 with point A as
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the point of separation, and name two distinct rays starting at

A. The starting point of a ray is called its endpoint. Note

in Figure 10.1 that 15X and g contain precisely the same points,

ithus Ts-A) = T11 also

The set of points common to g and Al is the segment PA.

Thus 171 n Ai = AP. The set of points found'in either g or Fe

or both is the line A. Thus Tat U "1"7 = andPt and Fe are called

opposite rays.

10.3 Exercises

Exercises 1-3 refer to the line £ below.

A B C
Q

1. Name two distinct rays of t having C as endpoint. Name the

open halflines of A for point of separation C.

2. Using two points, if possible, name each of the following:

(a) --AT3 U 170 (e) acn 15T3 (1) n 1-3-6

(b) Ab u (f) n (J) Ba na.g

(c) u 13-e (g) n (k) BA n°11-d

(d) (h) n sD (1) BA n

3. (,?) Name a ray with endpoint B, containing E.

(b) Name an open halfline contained in Bbl. Are there

others?

(c) Describe the set of points CA n'V.

(d) Name a ray containing B5. Are there others?

4. Let L be a line and P one of its points. Let hl and h2 be

the two open halflines of A determined by P. Let A and B
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be distinct points in hi and C a point in 112. Determine

whether each of the following statements is true or false

h,

C P A B

(a) All points of AB are in ht.

(b) All points of are in h1.

(c) Either rg or 131 contains C.

(d) Both "Kg and rEit contain C.

(e) Fe contains A.

-0-P contains A.

(g) All points of fg, other than P, are in hi.

A

-2 -1 0 1 2 3

Using the data shown in the above diagram tell what values

x may have if x is the number assigned to a point in each

of the following sets:

(a) WE (a) TA' (e) (g) A n
(b) 317g (d) 151 (0 AT3n PB ( h) K U PA

10.4 Planes and Halfplanes

A second separation principle concerns planes, and is

another example of an obvious statement. It states an essential

property of planes.

It will help you to think about a plane if you imagine a

very large flat sheet of paper, so large that its edges are

inconceivably far and unreachable. In fact, it would be even

better if you could think of a plane as having no edges, just
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as a line has no endpoints. In such a plane we could think of

a line; otherwise a line, reaching any edge the paper might have,

would have to stop and thus acquire an endpoint. But then it

would not be a line:

We cannot draw a line, since any drawing would necessarily

have to begin and end. In the same vein we cannot draw a plane.

But we suggested a line by drawing a segment and arrows at each

end. We suggest a plane by drawing a piece of it, as shown in

figure 10.2. Unfortunately there is no eas way to suggest in

the drawing that the plane has no edges.

Figure 10.2

However, to remind you that we are talking about a plane, rather

than a piece of it, we shall use Greek letters to name the plane.

For instance a and 0 (alpha and beta) will be the names of planes.

Our second separation principle concerns planes. This

Plane Separation Principle expresses in a precise manner, the

following idea:

Any line A in a plane a separates the rest of the plane

into two distinct portions (subsets). Each of these portions

is called an open halfplane. Within each halfplane one can move

smoothly from any point to any other point without ever encoun-

tering line k. However, if one moves within plane a from a point
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Figure 10.3

in one open halfplane to a point in the other open halfplane,

then it is necessary to cross line 2. The mathematical way of

stating this is as follows:

Any line A in a plane a separates the rest of a into two

disjoint sets having the following properties:

(1) If A and B are two distinct points in one of these

sets then all points of AB are in this set.

(2) If A is in one set and C is in the other then AC (the

segment, not V) intersects A in a point.

The line A is called the boundary of each open halfplane

determined by A, but actually it does not belong to either open

halfplane. The union of an open halfplane with its boundary is

called a halfplane.

Figure 10.4
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garmseettesrimpliO1/11=1111.4.41EMMIMmess.menr.

In the plane named 0 in Figure 10.4 you see line m separa-

ting 0 into two halfplanes named H1 and H2. If A is in HI, call

}lithe A-side of m. Then Ha is the side opposite the A-side.

10.5 Exercises

Let a be a plane containing line t, and let A contain point

A. Let the two open halfplanes determined by A be H1 and H2.

Determine whether each of the following statements is true or

false:

1. Any line containing A, other than A, contains points

of H1 and H2.

2. Any ray with endpoint A, not lying in £, contains

points of H1 and 112.

3. Any segment containing A as an interior point and not

lying in £, contains points of H1 and H.

4. If B and C are any two distinct points in H1, then BC

intersects A.

5. If B and C are any two distinct point in H1, then 131

does not intersect A.

6. If B and C are two distinct points in H2, thmte may

not intersect t.
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7. If D is in Hi and E is in H2, then it is possible that

tg 11 /.

Quadrant II
y axis Quadrant I

x axis

Quadrant IV

-1

Quadrant III

8. The coordinate system shown separates the plane into four

sets, each called a quadrant. The x-axis separates the

rest of the plane into two open
halfplanes, one containing

the point with coordinates
(0,2) the other containing (0,-2).

Let us name the first of these open halfplanes H
-1.3c

, the

other H. Similarly, the y-axis separates the plane into

two open halfplanes
which we name H.4.y and H..y, with the ob-

vious meaning
attached to each. Now Quadrant.I = H+x sr.

In the same manner define Quadrants II, III, IV.

10.6 Measurements
of Segments

Let us examine what is involved
when we use a ruler to find

the length of a segment. We first place the graduated edge of

the ruler against a line segment, say AB, matching the zero

point of the ruler with one of the points, say A. (See Figure

10.5.) 128



- 123 -

A

I I I
0 1 2

I 1

3 4

Figure 10.5

We then assign to point B the number on the ruler which matches

it and say that the length of AB, denoted by AB, is the number

assigned to B. In our example the ruler assigns 0 to A ana 3

to B. So AB = 3.

Now suppose we move the ruler to the left until it arrives

at the position shown in Figure 10.6.

A

16 if0 1

I I I I I

Figure 10.6

What is the number assigned by the ruler to A? to B? Using

these numbers how can you find AB? Probably you subtracted 2

from 5 since this calculation gives the number of unit spaces

in AB. But suppose we turned the ruler around to this position.

A

I I ! 1 ! .1

\. 1 i 1 i 1 1

Figure 10.7
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What are the assignments made by the ruler to A and B in this

position? Would you subtract 5 from 2 to find AB? This, of

course gives -3. In measuring the length of a segment we want

to know how many unit spaces it contains. Therefore, we use

only positive numoers for lengths of segments. If we do subtract

5 from 2, we must take the absolute value of the difference.

In general, then, if a ruler assigns the numbers xl and x2

to the endpoints of a segment AB, we can use the distance for-

mula.

AB IS I X1 X2 I

Let us now consider a ruler which has negative numbers on

it (like a thermometer) that is placed against AB and looks like

this.

A

-2

1

or perhaps like this,

A

11111 I

1 2 3 4

1 I

Figure 10.8

1 1 I 1

) 1 1 I 1 _1 1 1

or even like this.

Figure 10.9

A

Figure 10.10 13.0
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Does the distance formula give us the number of unit spaces in

each case? Let us see.

For tne ruler in Figure 10.8 the formula yields: AB = 1-1-21

For the ruler in Figure 10.9 the formula yields: AB = 1-30-(-7)1

For the ruler in Figure 10.10 the formula yields: AB = 12-(-1)1

Is 3 the value of AB in each case?

You know that the distance from A to B should be the same

as the distance from B to A. In the formula this reverses xi

and x2. Is it true that lx1 x2; = 1x2 xli?

Let us review the results of this section in terms of map-

pings.

(a) A ruler assigns numbers xi and x2 to the endpoints of

AB. Thus A---o-xl and Then we say AB = I x1 - x21.

(b) Moving the ruler 2 spaces to the left (as we did) is a

translation with rule n--4.n + 2. Thus x1 + 2

and x2--- -x2 + 2. We ask you to answer two questions:

(1) Does a translation preserve distance?

(2) Is lxi - x21 preserved under this translation?

Suppose the ruler were moved to the right. Are the last

two answers changed?

(c) In Figures 10.8 and 10.9 we moved the ruler stilly

further to the left. Is the composition of two trans-

lations still a translation? Do the answers to our

two questions change?

(d) Let us compare the rulers in Figures 10.6 and 10.10.
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Figure 10.11

Do you see a mapping of Z into Z with the rule n--4-4 - n? Then

- xl and x2-4.4 - x2. But 1(4 - xl ) - (4 - x2)1 =

lx2 - x11. And again we can say "yes" to our two questions

above. We conclude that the distance formula gives the correct

distance for all positions of a ruler.

We use the term line coordinate system to describe the re-

lationship between the points and numbers on a number line. The

number assigned to the point is called the coordinate of the

point in the system. Using these terms we can say that the dis-

tance between two points in a line coordinate system is the abso-

lute value of the difference of their coordinates.

10.7 Exercises

1. In this exercise use the numbers assigned by the ruler to

points in the diagram below. First express the length of

the segments listed below in the form 'xi - x2I. Then com-

pute the length.

A B C D E F

1 1 1 1 I 1 1 II I 1

0 ti2 1 II/2 2 3 31 4 41 5 5' 6

132



- 127 -

(a) AT (e) BC (i) CD

(b) AE (f) Y31) (j) P-Te.

(c) Ad (g) 7E (k) EF

(d) 7W (h) GB (1) GF

2. A ruler, graduated with negative and positive numbers assigns

0 to point A. What number does it assign to B if AB = 3?

(Two answers.)

3. A ruler assigns 8 to D. What number does it assign to E if

DE = 2. (Try to solve this problem by solving the equation

Ix - 8( 2.)

4. A ruler assigns 83 to F. What number does it assign to G if

FG = 69
e'

10.8 Midpoints and other Points of Division

A C B

B X 15

Figure 10.12

Let a ruler assign 8 to A and 15 to B. We shall try to

find the number assigned to C, the midpoint of AB. Let that

number be represented by x (See Figure 10.12). You recall that

a midpoint of a segment bisects it. This means that the length

of AC is the same as the length of CB. This explains statement

(1) below. Explain (2). Now x-8 must be positive. Why? Also

15-x is positive. Why? So the equality in (2) implies (3).

Explain (4) and (5). Check whether for x = 14, AC = CB.
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(1) AC = CB (4) 2x = 23

(2) Ix - 81 = 115 - xl (5) x =

(3) x - 8 . 15 - x

Use this method of finding the number assigned to the midpoint

of DE if in a certain line coordinate system the coordinate of D

is -2 and the coordinate of E is 5.

Let us generalize this method; that is, let us find a for-

mula for midpoints. In a line coordinate system let A have co-

ordinate xl and let B have coordinate x2, where xl < x2, and let

C, the midpoint of AB, have coordinate x (see Figure 10.13).

Then,

A C B

X, X X?

Figure 10.13

AC = CB

Ix xil = Ixa xl

x - xl = x2 - x (Why?)

2x = xl t x2

x = ( + xa )Xl

Do you recognize that x is the mean of xl and x2? This is an

easy way to remember the formula.

P R 0
3 X 12

Figure 10.14

Suppose R is in PQ and it divides PQ in the ratio 1:2 from

P to Q. (The phrase "from P to Q" tells that PR corresponds to
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1 and RQ to 2.) To find x for the data shown in Figure 10.14

we can proceed as follows:

(1)
- x112

lx 311 = 1 or 2Ix - 31 = 112 - xl
i

Both x - 3 and 12 - x are positive.

16 -31 1
Check

112 -

(2) 2 (x - 3) = 12 - x

(3) 2x - 6 = 12 - x

(4) 3x = 18

(5) x = 6

R

X 3 12

Figure 10.15

Suppose, instead, that R were not between P and Q, but that

P is between R and Q, as in Figure 10.15. Then 3 - x is posi-

tive, and 12 - x is positive. Then step (2) above becomes

(2' ) 2(3 - x) = (12 - x). Complete the solution and check.

10.9 Exercises

In Exercises 1 - 4 you are asked to derive results which

are going to be used in later developments. In this respect they

differ from other exercises whose results can be forgotten with-

out harm to an understanding of future developments. These ex-

ercises are marked "4." In the following sections such exer-

cises will also be marked with the symbol "4.n

41. Let B be an interior point of AC and let a ruler assign.

numbers 5 and 12 to A and C, as shown.

1Q5
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A B C

5 12

(a) What is one possible assignment to B that guarantees

that B is an interior point of AC? Name three other

possible assignments to B that also guarantee that B

is between A and C. What are all the possible assign-

ments to B such that B is between A and C?

(b) Show that AB + BC = AC if B is assigned the number 8

or the number 11x
1

e.

(c) Show that AB + BC = AC if B is assigned the number x

such that 5 < x < 12.

This last result may be stated in general as follows:

If B is between A and C, then AB + BC = AC. It is called

the Additive Property of Betweeness for Points.

W2. Suppose two circles in a plane have centers at A and B, and

respectively radii r1 and r2. We are going to compare AB

with r1 + re for different positions of the two circles.

Figure 10.16

(a) Suppose the circles do not intersect as shown in Figure

10.16. Then AB = AD + DB (Why?) and AD = AC + CD.

(Why?) So AB = AC + CD + DB. But AC = r1 and DB = re.

Hence AB = r1 + CD + re. Thus AB > r1 + r2.
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Figure 10.17

(b) Consider the position of the circles in Figure 10.17,

in which the circJes just touch at C. Show that AB =

Figure 10.18

(c) Consider° the position of the circles in Figure 10.18

in which they intersect. One of the points of inter-

section is named E. Now AB = AC + CB, (Why?) and CB <

r2 so AB < rl + r2. (Why?) EA and EB are also radii

and therefore EA = rl and EB = r2. Therefore AB <

EA + EB.

in words, this last result suggests that the length

of any side of a triangle (AABE in this case), is less than

the sum of the lengths of the other two. We call this con-

clusion the Triangle Inequality Property. You should note

that for any triangle, there are three inequaJities. Thus,

for ADEF (Figure 10.19)
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Figure 10.19

(a) DE < EF + FD,

(b) EF < FD + DE,

(c) FD < DE + EF.

#3. For Figure 10.20, we see by she Triangle Inequality Property

that in GABD, DA + AB > DB. Use this fact to show that the

perimeter of ADAC is greater than the perimeter of tDBC.

Figure 10.20

;4. Show in any triangle that the difference between the lengths

of any two sides is less than the length of the third side.

5. Which of the following triplets of numbers may be the lengths

of the sides of a triangle?

(a)

(b)

(c)

5,

5,

1,

6,

6,

2,

8

11

3

(d)

(e)

(f)

4.1, 8.2,

18, 22, 39

4, 4,i

12.3

10.10 Us:r.ng Coordinates to Extend Isometries

Let us consider an isometry, f, of a pair of points (A, B).
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If A-----0-A' and B-0-- , then AB = A' B' . How can we extend

this isometry to a third point of IA0 This is easily done by

working with the line coordinate system on V that assigns 0 to

A and 1 to B. Since AB = At B' = 1, there is a coordinate sys-

tem on ITV that assigns 0 to A' and 1 to B' .

A

0

8

C'

C

0

Figure 10.21

Now suppose C is any point on V and let its coordinate be

x. We can extend f to C by taking for its image the point C' on

V14V whose coordinate is also x. To convince yourself that we

have succeeded in extending f you should verify that AC = A'C'

and BC = B'C'. You can do this by using the distance formula.

How can you extend f to other points of V?

Before we examine an isometry involving non-collinear points,

we will need a plane coordinate system.

Given three non-collinear points A, B, C we can introduce

a plane coordinate system (see Figure 10.22) much as a plane

lattice coordinate system was introduced in Chapter 7.

Take A as origin, V as x-axis, V as y-axis. Assign to B the

coordinate 1 on the line coordinate system on V, assign to C

the coordinate 1 on the line coordinate system on V. The coor-

dinate 0 in both systems is assigned to A. Here we equip the

axes with line coordinate systems like those we have been using
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in this chapter (not just lattice points). The coordinates of a

point D in the plane are found, as before, by drawing lines

through D parallel to the y- and x-axes. The line coordinate of

the point E (where the parallel through D intersects the x-axes)

becomes the x-coordinate of D, and the line coordinate of F

where the other parallel through D cuts the y-axis) becomes the

y-coordinate of D. (In Figure 10.22 the coordinates of D are

(li, li))

Figure 10.22

Let us go on to consider an isometry, g, of three non-col-

linear points A, B, C, and how to extend g to a fourth point in

the plane of A, B, C.

Draw a triangle with plane coordinates as shown in Figure

10.22. On another paper trace AABC, calling it AA' B' C' and

give A' B' C' the same coordinates respectively as A, B, C.

Take any point D on the first paper and read its coordinates.

Locate the point D, on the second paper with the same coordinates

as D. Now place one paper over the other so that A-4-A'

. Does What conclusion seems

indicated from this experiment? How can you extend g to other

points of the plane?
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10.11 Coordinates and Translations

As you will see, coordinates are quite useful in studying

translations of points of a plane onto points of the same plane.

Suppose point A has coordinates (1, 3) in some plane coordinate

system and is mapped onto A', with coordinates (4, 5) by a trans-

lation. We can regard this translation as the composition of

two motions. (See figure 10.23) The first moves a point 3

units in the direction of the positive x-axis and is followed

by a second motion of 2 units in the direction of the positive

y-axis. Any other point of the plane will also have an image

under this composite translation.

Figure 10.23

The rule of this translation i8 easy to write.

x x + 3

4- 2

or simply (x, y) (x f 3, y * 2).

It is not hard to see that any mapping of the form

(x, y) (x + a, y + b)

is a translation in a plane coordinate system.

In Chapter 9 we said that a translation in a plane maps

lines onto parallel lines. Here, too, under the translation
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h
(x, 4- 3 , Y #2)

the point A (1, 3) [which means the point A with coordinates

(1, 3)] maps onto A' (4, 5), and B (3, 8) maps onto B' (69 10),

so that rg maps onto the parallel line rIP (See Figure 10.24).

Now consider the effect of the translation

+ 2, y + 5)

on the points A and A'. k maps A (1, 3) into B (3, 8), and it

maps A' (4, 5) onto B' (6, 10), so that ttl II

Since n I I and trt , the figure ABB' A' is a

parallelogram. (It is a quadrilateral with opposite sides paral-

lel.)

Figure 10.24

We can now check some facts about parallelograms in terms

of coordinates, in particular, whether the diagonals bisect each

other. But the coordinate formula for midpoints available to

us is for line coordinates. We must therefore develop a formula

for plane coordinates.
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In Figure 10.25 we show only the diagonal AB! of parallel-

ogram ABB'A' . Let M be the midpoint of AB', and consider the

lines through A, M, and B that are parallel to the y-axis.

These lines intersect the x-axis in points Ai, Mt, and B1,

respectively.

Figure 10.25

As you examine the coordinates of A1, M1, and B1 in the

line coordinate system on the x-axis, do you find that M1 is the

midpoint of AlBl? Did you use the midpoint formula for line

coordinate systems to check your answer? Since M acquires its

x-coordinate from M,, we conclude that the x-coordinate of M is

also (1 + 6) or 72. Using a diagram similar to 10.25 (drawing

parallels to the x-axis), show that the y-coordinate of M is

1 13
+ 10) or lr.

In general, if P has coordinates (xl, yi) and Q has coor-

dinates (Y4, ya) then the midpoint of PQ has coordinates
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+ X2 yi yg

( 2 2

Now verify that the coordinates of the midpoint of al are

also (72, 24). Does this verify that the diagonals of ABB'A'

bisect each other?

There is a bonus in this development, which you will be

asked to prove in an exercise. It is this In any parallelo-

gram the sum of the x-coordinates of either pair of opposite

vertices is the same. In fact we can go on to say that ABCD is

a parallelogram if the sum of x-coordinates of A and C equals

the sum of the x-coordinates of B and D and the sum of the y-

coordinates of A and C equals the sum of the y-coordinates of

B and D. We can prove this if we can show that AB CD and AD If

BC. Let us start with ABCD and coordinates in some system as

shown in Figure 10.26. Then we are told that

a +e=c+gandb+f=d+ h
It follows that

(a + e) =3 (c + g) and i (b + f) = (d + h).

Figure 10.26

This means that M. and U bisect each other, say in M.

Thus M is the center of a point reflection that maps A onto C

and B onto D.
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In Chapter 9 we saw that a point reflection preserves

parallelism..Hence,1Kgbil D. M is also the center of a point

symmetry that maps A onto C and D onto B. Thus,7Xeirre:

We conclude that ABCD is a parallelogram.

10.12 Exercises

1. Let ABB' A' be a parallelogram. It can be regarded as having

been formed by a translation under which A --WA' and

Suppose A and B have coordinate (a,b) and

A
(ob) likd)

(c,d) respectively in some coordinate system.,Let the

translation have the rule:

+ p and y---u-y + q.

Then At has coordinates (a + p, b + q) and B' has coordi-

nates (c + p, d + q).

(a) Using the midpoint formula show that AB' and A'B

bisect each other.

(b) Show that the sum of the x-coordinates of A and B' is

equal to the sum of the x-coordinates of A' and B.

(c) Show that the sum of the y-coordinates of A and B' is

equal to the sum of the y-coordinates of A' and B.

2. Suppose ABCD is a parallelogram and the coordinates of three
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vertices are given. Find the coordinates of the missing

vertex. Check your answers with a drawing.

(a) A (0, 0) B (3, 0) D (0, 2)

(b) A (0, 0) B (3, 2) D (2, 3)

(c) A (2, 1) B (5, 6) C (0, 0)

(d) A (3, 2) C (-3, 2) D (-2, 5)

(e) B (-3, 2) C (3, 3) D (2, 5)

(f) A (0, 0) B (a, 0) D (0, b)

*(g) A (a, b) B (c, d) C (e, f)

3. Suppose ABCD is a parallelogram, that E is the midpoint of

AB and F is the midpoint of CD. Show that AECF is also a

parallelogram. (You can simplify the proof by using the

coordinate system in which A, B, D have coordinates (0, 0),

(1, 0) and (0, 1) respectively.)

4. (a) Using the indicated coordinates, show that PQRS is a

parallelogram.

s(O 4) R4,4

(b) Suppose B is the midpoint of SQ, that A is the midpoint

of SB and C is the midpoint of B. Show that PCRA is

also a parallelogram.
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5. For the parallelogram PQRS in Exercise 4 take any suitable

coordinates for the vertices and show again that PCRA is a

parallelogram. What is the significance of taking any suit-

able coordinates for P, Q, R, S?

6. Using coordinates, show that translations preserve midpoints.

10.13 Perpendicular Lines

In Chapter 9 we studied reflections in a line. In this

section we use such reflections to review and extend the idea

of perpendicular lines.

Figure 10.27

In the diagram of Figure 10.27 you see that the reflection

of line a in line A is line a'. Now a and a' are different

lines, and they intersect each other at point P. Why must P be

a point of A? Imagine that a rotates around P as a pivot in the

clockwise direction. Let a' continue to be the reflection of a.

How does a' rotate? In the course of rotation, does a' ever

become the same as a?

Now rotate a in a counterclockwise direction. In the course

of this rotation does a' again become the same as a?

We see that a can be its own image, as it rotates about P,
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in two ways. In one of these a = A; in the other a A A. In

general two lines are perpendicular if they are different lines,

and one of them is its own image under a line reflection in the

other.

Figure 10.28

We denote that a is perpendicular to A by writing a 1 A.

Note that A is also its own image under a reflection in a (Figure

10.28). So A 1 a whenever a 1 A. Also note that the plane is

separated by each of the two perpendicular lines into two half-

planes.

A

>0

Figure 10.29

On a piece of paper draw line L and mark a point A, either

on or off A, as in Figure 10.29. Fold the paper along a line

containing A such that one part of A falls along the other. In

how many ways can this fold be made? You know that the line of

the ,,rease is perpendicular to A. It would seem then that in a

given plane there is exactly one line containing a given point

that is perpendicular to a given line.
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10.14 Exercises

1. For this exercise draw two parallel lines on your paper,

calling them a and b.

(a) Fold the paper so that one part of a falls along the

other part. Label the crease c. Is c i a? Why?

(b) For the fold you made in (a), does part of b fall along

another part of itself? What bearing does your answer

have on the perpendicularity relation of c and b?

(c) Tell how the results of this experiment support or do

not support this statement: If two lines are parallel,

a line perpendicular to one is perpendicular to the

other.

2. Suppose, as shown in the diagram above, thatt-Ci. Ile. Can

n also be perpendicular to t:6? Be ready to support your

answer.

3. Suppose, as shown in the diagram above, that /1 i a and /2

a. Can Al intersect /2? Be ready to support your answer.

If they do not intersect, how do you describe their relation-

ship?
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0

P

A. A'
-90

V

4. Let A' be the image of A under a reflection in /, as shown

in the diagram above, and let %);It' intersect k in P. What

is the image of P under this reflection? You know that a

reflection in a line preserves distance. Compare AP with

A' P. We see that 2' IV' and P is the midpoint of AA'. We

call the midperpendicular or perpendicular bisector of AA'.

Show that every point in it is as far from A as from Al. We

can statE the result of this exercise as follows: Every

point 11, the midperpendicular of a line segment is as far

from one endpoint of the segment as from the other.

5. Suppose A is the midperpendicular of AB. Suppose E is in

the B-side of L, as shown in the diagram below.

( ;a) We can show that EA > EB as follows: (You are to give

a reason for each statement.)

(1) A and B are on opposite sides of L.

(2) E and A are on opposite sides of A.

(3) EA intersects A in a point, say C, which is be-

tween A and E. 150
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(4) EA = EC CA

(5) EC CB > EB

(6) CB = CA

(7) EC CA > EB

(8) EA > EB

(b) Suppose F is in the A-side of t. Show by an argument

like the one in (a) that FB > FA.

(c) State in words the proposition that was proved in (a)

and (b).

10. 15 Using Coordinates for Line and_Point Reflections

For our present purpose we use a special coordinate system

in which the axes are perpendicular lines. Such special coordi-

nate systems are called rectangular coordinate systems. We shall

study reflections in their axes. Let .tx be the line reflection

in the x-axis and let £y be the line reflection in the y-axis.

Let P have coordinates (2, 3).

A

0 OM

x

S 0

Figure 10.30
t
x

If P-----4-Q, what are the coordinates of Q?

If what are the coordinates of R?
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L

If what are the coordinates of S?

We can form the composition ty o Ax by taking the reflection

in the x-axis, followed by the reflection in the y-axis. What

is the image of P under this composition? Does the image of P

change if we reverse the order of the reflections?

Now let us consider the same questions for a point A with'

coordinates (a, b).

A

If A B, what are the coordinates of B?
L

If what are the coordinates of C?
o

If what are the coordinates of D?

Do you agree that the rules for t
x

and A
Y'

when given in

forms of coordinates of points are as follows:

for t
x

: or (x, y) (x, -Y)

for t : x -x, y-----. y or (x, y)

for .2y o tx: x -x, y--'"""0"'-y or (x, y) (-x, -y)

You must surely have noted by this time that the A x
o A

y
is

a point reflection in the origin of the coordinate system. If we

denote this reflection in 0, the origin, as Po we can state the

rule of P
o
in terms of coordinates as follows:

Po

(x, y) (-x, -y)

10.16 Exercises

1. For each of the points with coordinates in a rectangular
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coordinate system given below find the coordinates of its

image:

(1) under the line reflection in the x-axis

(2) under the line reflection in the y-axis, and

(3) under the point reflection in the origin

(a) (3, 5) (c) (5, -3) (e) (2, 0) (g) (-3, -1)

(b) (-3, 5) (d) (-3, -5) (f) (0, 5) (h) (82, -643)

2. Let A be the line that is perpendicular to the x-axis con-

taining the point with coordinates (3, 4) in some rectangular

coordinate system. Let points have the coordinates listed

below. Find the coordinates of the image of each point under

a line reflection in A.

0

1(3

1

(a) (1, 4) (c) (3, 2) (e) (0, 0) (g) (8, -3)

(b) (0, 3) (d) (-3, -1) (f) (10, 0) (h) (x, y)

3. Let m be the line that is perpendicular to the y-axis of a

rectangular coordinate system, and contains the point with

coordinates (3, 4). Find the coordinates of the image of

each point in Exercise 2 under a line reflection in m.

4. Find the coordinates of the image of each point in Exercise
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2 under a point reflection in the origin 0.

5. Let A and B have rectangular coordinates (1, 5) and (3, 1)

respectively.

(a) Let A x A' and B x B' . Find the coordinates

of A' and B' .

(b) Find the coordinates of the midpoint M of AB and let
A

M X MI. Find the coordinates of M' .

(c) Show that M' is the midpoint of A'B'.

6. Show that the line reflection in the x-axis preserves mid-

points. You might wish to work with points A and B having

coordinates (2a, 2b) and (2c, 2d).

7. Show that the point reflection in the origin 0 preserves

midpoints.

8. (a) Determine whether the points with coordinates (1, 3),

(4, 1), (10, -3) are on the same line.

(b) Find the coordinates of the images of the three points

in (a) under the line reflection in the x-axis, and

determine whether or not the images are on a line.

(c) State in words what the results of this exercise seem

to indicate.

9. Using the three points in Exercise 8 show that their images

under a point reflection in the origin are on a line.

10.17 What is an Angle?

No doubt the word "angle" has some meaning for you. However,

you may find it quite difficult to describe it precisely. To

see just how difficult, you might try to explain what an angle
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is to a youngster in the first or second grade. A particularly

difficult task would be to describe it without diagrams.

(To see how important angles are in everyday thinking, one

can look up the word angle and related words in the dictionary.

You will be asked to do this in an exercise.)

You probably would say that the diagram in Figure 10.31

represents an angle. But is the entire angle shown? Is the

fact that Tit and og have a common endpoint significant? Are the

points between A and B part of the angle? These are some of the

questions that must be answered in giving a precise mathematical

meaning to the word "angle."

Figure 10.31

After carefully reading the following you should be able

to answer all of them.

Figure 10.32
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Let us start with two lines intersecting at 0, as shown in

Figure 10.32. We name them and tg. With these lines given

we shall show in stages how the angle emerges. First we take

the halfplane with boundary t1 that contains B. It is indicated

by vertical shading lines. Then we take the halfplane with boun-

dary that contains A. It is indicated by horizontal shading

lines. The region that is crosshatched is the angle. It is

the intersection of the two halfplanes. It is named LAOB.

Each point used in the name signifies something. 0 is the point

of intersection of the two lines. It is called the vertex of

the angle. A and B tell us which halfplane to take. a and d
are the endrays or sides of the angle. There are other rays in

the angle. Any ray starting at 0 and intersecting any interior

point of AB is called an interior ray of the angle. All points

Figure 10.33

of the angle, not in endrays, are called interior points of the

angle and the set of interior points is called the interior of

the angle. The points in the plane of LAOB that are not points

of the angle are called exterior points of the angle. (Note

that the points on the endrays of an angle are points of the

angle, but not interior points.) If = tg and 0 is between A

and B, then we cannot build up the angle as described above.

156



B

- 151 -

0 A

0

Figure 10.34

Nevertheless we call any halfplane with boundary It with 0 as

vertex, a straight angle. If 0 is not between A and B, then -01

and dg name the same ray. In this case LAOB collapses into a

ray, and we will call LAOB =a= Tiga zero angle.

Does our definition of an angle differ from what you have

previously learned about angles?

If so, we ask you to consider the fact that a definition

is an agreement among ourselves as to what a word shall mean.

Once the agreement is made, however, we must stick with it and

with its consequences.

10.18 Exercises

1. Draw two intersecting lines on your paper and label points

as in the diagram. Using ordinary black pencil shade the

blue pencil

A

/4/black ink

black pencil

rod pencil

D-side of AI with rays parallel to 618; using black ink shade

the C-side of tg with rays parallel to at Using red pencil
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(or any available color) shade the B-side of t? with rays

parallel to A Using the blue pencil (or any other avail-

able color) shade the A-side of t6 with rays parallel to a.

You can now describe LAOD as the blue-black pencil angle.

In similar manner describe LBOD, LAOC, LBOC.

2. Using the diagram shown below, name:

(a) four straight angles

(b) four zero angles

(c) four other angles

3. Using the diagram shown below, describe as a single angle,

if possible:

(a) LAOB U LBOC

(b) LAOC n LCOB

(c) LAOC U LBOD

(d) LAOC fl LCOD

4. There are ten angles in the diagram of Exercise 3. Four of

158



- 153 -

them are zero angles. Name the other six.

5. You may have noticed that there are many resemblences be-

tween an angle and a segment. For each sentence below

about segments write one that resembles it and is about

angles.

(a) A segment has two endpoints.

(b) A segment is a set of points.

(c) The interior of a segment contains points of a segment

other than its endpoints.

(d) If C and D are interior points of AB, then every point

in CD is in AB.

6. Consult a dictionary to find five uses of angles.

10.19 Measuring an Angle

You have noted in Exercise 5 above a number of resemblences

between angles and segments. It should not surprise you that

the measurement of angles also resembles the measurement of seg-

ments. To measure a segment we use a scaled ruler. To measure

an angle we use a scaled protractor. The numbers on a ruler are

assigned to points. The numbers on a protractor are assigned to

rays. (In Figure 10.35 only three rays are shown).

0

Figure 10.35
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Numbers on ordinary rulers start at zero and go on as far as per-

mitted by the scale unit and the length of the ruler. No matter

how large the protractor we aro going to use, its numbers start

with 0 and end with 180.

As you see, a protractor has the shape of a semi-circle.

AB is the diameter of the protractor and 0 is its center. In

Figure 10.35 the numbers increase in the counter-clockwise di-

rection. However, if we reflect the protractor in the line that

is the midperpendicular of AB, then each number n is mapped onto

180-n. In a protractor showing the images of this line reflec-

tion, the numbers increase in the clockwise direction (Figure

10.36),

0

Figure 10.36

B

In either case the ray which lies in the midperpendicular of AB

is assigned 90.

To measure an angle with a protractor we must begin by

placing the center 0 on the vertex of the angle, and each ray

of the angle must intersect the edge of the protractor. Perhaps

the position of a protractor in measuring LABC could be like

that shown in Figure 10.37.
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Figure 10.37

In this position the protractor assigns the number 30 to

Et and 103 to Bit. It cannot come to you as a surprise that the

measure of LABC is 103 - 30 or 73. Or if you computed 30 - 103,

you would then take the absolute value of the difference, just

as we did in measuring line segments. When the protractor is

graduated from 0 to 180 we call the unit of measurement a degree.

When we say treat the measure of LABC is 73 degrees, or 73°, we

are also saying that we used a protractor graduated from 0 to

180. (There are other types of protractors graduated from 0 to

other numbers.) In measuring a line segment we like to place

the ruler so that it assigns 0 to one end, for this considerably

simplifies the computation. In measuring an angle we also like

to place the protractor so that zero is assigned to an endray,

for the same reason.

The abbreviation for "der-ee measure of LABC" is mLABC.
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0 A

1. Consult the diagram above to find the measure of each angle

listed below:

(a) LAOC (e) LBOE (i) LGOA

(b) LBOC (f) LFOB (j) LAOG

(c) LCOB (g) LGOC (k) LAOD

(d) LAOF (h) LEOE (1) LDOG

2. Using the diagram shown below, find the measure of each

angle listed below:

(a) LAOC (d) LFOG

(b) LBOD (e) LGOE

(c) LDOC (f) LFOB

I 6 2
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3. Consult the diagram of Exercise 2

following:

(a) mLAOB + mLBOC

(b) mLGOA - mLCOA

(c) 2mLAOB + 3mLCOD

4. If two angles in a plane have the same vertex, and only one

ray in common, they are called a pair of adjacent angles.

From the diagram determine which pair of angles listed below

are adjacent angles.

to compute each of the

5.

(a) LABD and LCBD

(b) LABC and LCBD

(c) LDBA and LABC

In the diagram above name as many pairs of adjacent angles

as you can.
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6. Using an illustration show that the sum of the measures of

two adjacent angles is not necessarily the measure of an

angle.

7. Using a protractor, find the measure of each of the angles

listed for the diagram below:

(a) LAVB

(b) LDVC

(c) LAVC

(d) LEVC

(e) LAVF

(f) LFVD

(g) LBVF

(h) LAVD

48. Consider LAOB, as shown in the diagram and the point reflec-

tion of LAOB in vertex 0. Under this reflection the image

of endray re is ODD, the opposite ray. What is the image of

UN.>? What is the image of an an interior ray of LAOB? What

is the image of LAOB? The image of an angle under a point

reflection in its vertex is its vertical angle.

16
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9. (a) In the diagram of Exercise 8, what is the vertical angle

of LDOC?

(b) What is the vertical angle of LAOB?

10. Using a protractor show that the measure of an angle is

equal to the measure of its vertical angle.

11. AB and AC are two sides of a triangle. They determine two

endrays At and of of an angle. In this sense every triangle

has three angles. We can name them LA, LB, and LC.

12.

Measure each angle of the triangle and then find the sum of

their measures.

(a) Explain why we cannot use the

protractor in the position

shown here to measure LAOB.

(b) Can the measure of an angle

be greater than 1800? Explain

your answer.
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13. Look at 4.BVC in the diagram below. Now look at LAVD. Com-

pare their measures. (Try to answer without the use of a

protractor.)

14. You know that two perpendicular lines determine four angles

disjoint except for their sides. What is the measure of

each angle?

15. (a) Measure LAVB in the diagram below. Using your result,

find the measure of LBVC.

(b) Suppose the measure of LAVB is 40. What is the measure

of LBVC? Try to answer without using a protractor.

10.21 Boxing the Culpass

As you know the marks on a ruler are located by repeated

bisections, once we start with inch marks. The first bisection

produces a ruler like this:

I

I I 1

2 2 1 3 2

Figure 10.38
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A second bisection produces a ruler like this.

7 7 7 IT7
2 2

11"II2 2 2
4 + 4 4 IT

Figure 10.39

Repeated bisections produce eighths, sixteenths, and thirty-

seconds.

There is an analogous situation for protractors, more

accurately for two protractors, placed diameter to diameter to

form a circle. It is called boxing the compass, and gives the

type of compass used in certain types of marine navigation.

A diameter of either protractor bisects the circle. One

end of this diameter is marked N (north) and the other is marked

(south). (Figure 10.40)

First Bisection

Figure 10.40

Bisecting each semi-circle locates E (east) and W (west).

(Figure 10.41)
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N

Second Bisection

Figure 10.41

Bisecting each of the four arcs locates NE (northeast), SE

(southeast), SW (southwest), and NW (northwest). Notice we do

not say "eastnorth." The rule is that "north" takes precedence

over "east" and "west" because it appeared earlier in the process.

Likewise, we say southeast because "south" appears before "east"

in the process.

Third Bisection

Figure 1C.42

Bisecting each of the eight arcs locates NNE (northnorth-

east), ENE, ESE, SSE, etc. In the designation NNE, N appears

before NE because it is on the N side of NE. Thus, ENE is on

the E side of NE.
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NNW

WSW

SW

SSW

NNE

NE

ENE

E

ESE

SE

SSE

Fourth Bisection

Figure 10.43

The fifth bisection completes boxing of the compass. The

midpoint of the arc between N and NNE is called N by E (north

by east); the one between NNE and NE is called NE by N. Not

NNE by S. Why not?

N
NbYLNE

NE byN
NE

NE by E

ENE

E byN
E

Fifth Bisection

Figure 10.44

Make a complete diagram showing the compass "boxed."

The circle is now subdivided into 32 arcs, each having the

same measure. The mariner calls each measure a "point." This

point does not mean the point we study in geometry. The terms

"half-point" and "quarter-point" describe still smaller arc

lengths. Since there are 8 points to one quarter of a circle,

one point corresponds to 114°. So a change of course of one-

quarter point corresponds to a change of approximately 3°.
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Thus the kind of "protractor" used in some types of naviga-

tion is quite different from the one we described in Section 10.19.

10.22 More About Angles

Draw ray VA on your paper and place your protractor so

that V7 is assigned zero. In how many possible positions can

V A

Figure 10.45

you hold the protractor? (Were you careful to place the center

of the protractor on V?) For each position, draw a ray, starting

at V, to which the protractor assigns the number 70. How many

such rays can you draw for each position? How many angles then

can you draw having measure 70° if Vt is one of the sides?

Do you agree with this statement?

For each ray, for each halfplane containing this ray in

its boundary, and for each number x, such that 0< x < 180, there

is exactly one angle with measure x that has the given ray as

one side.

This statement is going to be very useful to us in our

study of angles. For instance, we can now show that any angle,

such as LAVB, can be divided into two angles that have equal

measures. To do this, we place a protractor in the position

170

V A

Figure 10.46
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shown; see that 110 is assigned to Vg and reason that we are

1
looking for the ray that is assigned .f of 110 or 55. We look

for 55 on the protractor and draw Ti, the ray that is assigned

55. What is mLBVC? mLCVA? Have we divided LAVB into two an-

gles as claimed? How can we use the statement above to show

that an angle has exactly one midray?

In our example V is called the midray of LAVB for obvious

reasons; it bisects the angle, and is therefore also called the

bisector of LAVB. Explain why any angle, other than a straight

angle, has only one midray.

We pause here to introduce some terms describing angles.

If the measure of an angle is 90, it is called a right angle.

If the measure of an angle is between 0 and 90, it is called an

acute angle. If the measure of an angle is between 90 and 180,

it is called an obtuse angle.

10.23 Exercises

1. For each number listed below draw an angle whose measure is

that number:

(a) 35 (b) 135 (c) 18 (d) 90 (e) 180 (f) 0

2. Draw an angle which is:

(a) a right angle (c) an obtuse angle

(b) an acute angle

3. This exercise is a test of how well you can estimate the

measure of an angle from a diagram. For each of the angles

given, estimate the measure, record your estimate, and then use

your protractor to check your estimate.

1'1



- 166 -

d

4. This is an exercise to test how well you can draw an angle

without protractor when you are told its measure. Draw the

angle flrst, then check with protractor, and record the error

for each of the following measurements:

(a) 45°

(b) 30°

( c)
1500

(d) 90°

(e) 60°

(f) 120°

5. How close can you come to drawing the midray of an angle

without using a protractor? Try it for these cases: an

acute angle, a right angle, an obtuse angle.
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6. Try to draw a triangle that has two right angles. If you

are not able to do so, explain the failure.

7. In this exercise, we consider what it means when three rays

have the same vertex; that is to say, when one is between

the other two.

(a) Look at rays V% Vg, and Ve in the diagram. Would you

say that one of them is between the other two? If so,

what would you mean?

(b) Now look at 0l, at, and 0 g in the second diagram.

Would. you say that one of these is between the other

two?

(c) In (a) is V a ray of LBVC? Is a ray of LCVA? Is

VV e a ray of LAVB?

(d) In (b) is IV a ray of LPOR?

(e) Formulate a definition for betweeness for rays.

1 10
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18. Draw LAVB and an interior ray 1 of this angle. We say that

ve is between and Thlg. Using a protractor show that mLAVC

mLCVB = mLAVB. This result is important enough to have a

name. It is the Betweeness-Addition Property of Angles.

State it in words. There is also a Betweeness-Addition

Property of Segments. State it.

10.24 Angles and Line Reflections

Make a drawing like the one in Figure 10.47, with VN the

midray of LAVB. (We have an atigle of 35°. You can use any an-

gle you like.)

Figure 10.47

If you fold your paper along 7, do "Vt and fall on each other?

Then we may say:

Each endray of an angle is the image of the other

under the line reflection in the line containing

the midray of the angle.

Suppose X is the point in 71, such that VX = 2. Where would you

expect to find the image of X under this line reflection L?

Let X Then VX = VY. Moreover, the perpendicular to

1/1 that contains X must also contain Y. Why? We conclude that

45-(V Oft Also if Z is the point in which intersects Ws then
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XZ = YZ. Why? One more result. In folding your paper, did

LVXY fall on LVYX? Then mLVXY mLVYX.

Let us summarize these results. If V is the midray of

LXVY, VX = VY, and C intersects V in Z, then:
A

(1) under the line reflection A in I01,

A

Since a line reflection

is an isometry, VX = VY, XZ = YZ. Also

(2) mLVXZ = mLVYZ.

The second fact rates attention because it is a special

case of a more general statement which we are now ready to under-

stand,. It applies to all isometries, of which line reflections

are only one kind.

Under any isometry the measure of an angle is the same

as the measure of its image angle.

We shall pursue this further in the next section. Meanwhile,

we apply our results to a special type of triangle. If at least

two sides of a triangle have the same length it is called an

isosceles triangle. These two sides are called the legs of the

isosceles triangle; the third side is called its base. The

angles of the triangle having vertices at the ends of the base

are called base angles, the third angle is called the vertex

angle. Let AABC be an isosceles triangle with AB = AC,

Figure 10.48
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and let the midray of the vertex angle intersect the base in

point M (Figure 10.48). Then under the line reflection £ in IR,
A

By our previous results we

conclude:

(1) The base angles of an isosceles triangle have

the same measure.

(2) The midray of the vertex angle of an isosceles

triangle lies in the midperpendicular of the base.

10.25 Exercises

1. Suppose D, B, C, E are on a line as shown below, and A is

not. If AB = AC, show by an argument that mLABD = mLACE.
A

2. For the figure in Exercise 1 add the information that BD = CE.

Using the line reflection £ in AN, where WR is the midray

of LBAC, explain why each of the following is true or false:

(a) ii is the midperpendicular of DE.
A

(b) E D and D E and DM = EM.

(c) AE and AD = AE.

(a) "Al "Al and Al

(e) mLDAB = mLEAC.

3. Suppose PQ = PR and QM = MR as shown below. Let A be the

midperpendicular of QR. Do you think that A contains P?
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Support your answer with an argument.

4. In the diagram below AD = AB and DC = CB.

(a) What kind of triangle is ABD? CBD?

(b) How is the midray of LBAD related to BD?

How is the midray of LBCD related to BD?

(c) How many midperpendiculars of DB are there?

(d) The figure ABCD has the shape of a kite, so we call it

a kite. You see that it can be mapped into itself by

a line reflection in M List five pairs of angles in

the kite for which the angles in each pair have the

same measure.

5. In the diagram below the four sides AB, BC, CD, and DA have

the same length. It is a kind of "double kite." Show that

its diagonals bisect each other and lie in perpendicular

lines,
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ln.26 Angles and Point Reflections

In an exercise (10.20 Exercise 8) we noted that the image

of an angle under a point reflection in its vertex is its vertical

angle. It quickly follows that the measure of an angle is equal

to that of its vertical angle. This is a valid conclusion.

Nonetheless, let us explore the situation a little more, partly

to review some basic notions and partly to illustrate a proof

which resembles many that will follow.

Suppose LABC is a given angle (Figure 10.49). If B is the

midpoint of AA' and also TO , then LA' BC' is the image of LABC

under a point reflecticn in B. We can easily locate A' and C' by

using a compass with B as center. Now look at the quadrilateral

ACA'C' . Its diagonals bisect each other. Then what kind of

quadrilateral is ACA'C'? How does your answer lead to the con-

clusion that CA = C' At ?

Let us review three facts: (1) AB = A' B, (2) CB = GIB,

(3) CA = C'A' . Do not these three facts show that the mapping

Figure 10.49

under which A B C' is an isometry?
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We conclude that mLABC = mLA1 BC'. (Remember that an isometry

preserves angle measure.) In this example we reviewed the basic

notion of an isometry and we have seen how to use some properties

of parallelograms in a proof.

Suppose the center of a point reflection is not the vertex

of an angle. In each of Figures 10.50 and 10.51, the image of

LABC is LA'B'CI under a point reflection in 0, a point which is

not the vertex B. Verify in each case that 0 is the midpoint

of AA' , BB', and CC' . This should assure you that we do indeed

have a point reflection in 0.

Figure 10.50

Figure 10.51

In each case the mapping of A, B, C onto A', B', C' respectively,

can be shown to be an isometry; that is AB = A'B', BC = B' C' and

19
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CA = C'A' . Find two parallelograms in Figure 10.50 that help

to show why AC = A' C' and BC = B' C' . Try to figure out why

AB = A' B' . In Figure 10.51, we can find three parallelograms

that help in proving that the mapping is an isometry. Name the

three parallelograms.

10.27 Exercises

1. Use a protractor to measure only one of the four angles:,

LAVE, LBVC, LCVD, LDVA and then tell the measures of the

other three.

2. Draw a diagram showing the image of LABC under a point reflec-

tion in 0 for each of the following cases:

(a) 0 is a point in I51, not B.

(b) 0 is a point in V, not B.

(c) 0 is an interior point of LABC.

(d) 0 is an exterior point of LABC.

3. Copy a figure like the one shown below. Be sure to take 0

as the midpoint of VA. Draw the image of LAVB under a point

reflection in 0.

150
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Under this mapping what is the image of V? What is the

vertex of the image angle? If B' is the image of B under

the point reflection in 0, show that t' 11 tt The statement

of this result is quite complex. We start it and you are to

complete it: If the center of a point reflection of an angle

is a point, but not the endpoint, of an endray of the angle,

then the image of the second side ...

4. Draw an angle and its midray, and take any point, not the

vertex, of its midray. Draw the image of the angle under a

point reflection in this midray point. You should note that

the angle and its image determine a quadrilateral. List

some of the properties of this quadrilateral that you can find.

5. Repeat the instructions in Exercise 4 with the modification

that the center of reflection in an interior point of the

angle, not in the midray.

6. Suppose ABCD is a parallelogram. Is there a point reflection

under which D B, A C? What is its center?

How do your answers help to show that each angle of a paral-

lelogram has the same measure as that of the opposite angle?

10.28 Angles and Translations

Let LAVB be mapped by a translation such that the image of

01.
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V is V'. (See Figure 10.52.)

B

Figure 10.52

Let the images of A and B be A' and B' under this translation.

Since a translation is an isometry, and we have agreed that iso-

metries preserve angle measures, it follows that mLAIV1B, =

mLAVB. Further results relating angles and translations are

explored in the following exercises.

10.29 Exercises

14. Copy LAVB and then show a translation of LAVB by a drawing

that maps V onto A. Let the translation map A onto A' and

B onto B'. Under this translation what are the images of

VI, Vg, LAVB? We may call the pair of angles AVB and A' AB'

"F angles" because they form an F figure.

2. (a) Repeat the instructions in Exercise 1 for the translation

that maps A onto V.
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(b) Repeat again for the translation that maps V onto B.

3. Let Ti be the translation that maps A onto V and T2 the

translation that maps V onto B.

(a) Copy the diagram below, and in it make a drawing for

TT o Ti..

(b) Make a drawing for T1 o T2 in the same diagram.

(c) Are the images of LAVB under both compositions the

same? Are the drawings the same?

4. In the diagram below r6 11 W and M is the midpoint of. QV.

(a) Describe a mapping under which the image of LPVQ is LRQT.

(b) Describe a mapping under which the image of LPVQ is LVQS.

(c) Describe a mapping under which the image of LRQT is

LSQV. Is this mapping on isometry?

(d) Describe a mapping under which the image of LRQT is LSQM.

(e) Under what composite mapping is LSQM the image of LPVQ

if a translation is first in the composition?
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(f) Compare the measures of /_PVQ and LSQV. We may call

angles PVQ and SQV "Z angles" because they form a Z

figure.

10.30 Sum of Measures of the An les of a Trian 1

No doubt you have measured the three angles of a triangle

and have found the sum of their measures to be approximately

180. Let us see how isometries can be used to prove the sum is

exactly 180.

Figure 10.53 shows an image for each angle of AABC under

different mappings.

First consider the translation that maps A onto C. This

translation maps C onto R and B onto S. What are the images of

fig and AEG under this translation? Do you see that this trans-

lation maps LCAB onto LRCS?

Examine the translation that maps B onto C. Under this

translation what is the image of ila? of LABC?

Figure 10.53

The third mapping is a point reflection in C. Under this

mapping what is the image of LACB?

1 84
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As a result of these mappings, all isometries, we see:

(1) mLCAB = mLRCS,

(2) mLABC = mLPCQ,

(3) mLBCA = mLQCR.

If the sum of the measures of the image angles is 180, then we

can safely conclude that the sum of the measures of the angles

of the triangle must also be 180.

Do you think the first sum is 180? Why? In answering this

question remember that no statement was made concerning whether

CAS and werewere on one line. Are they? Why?

One can prove the above result by using other isometries,

and you may find it interesting (in exercises) to find your own.

There are many immediate results followi _g from the triangle

measure sum. For instance we can now show: If a triangle has

a right angle then the sum of the measures of the other two

angles is 90. The proof can be presented in a step by step

argument as follows:

(1) Let tABC have a right angle at C.

(2) mLA + mLB + mLC = 180

(3) mLC = 90

(4) mLA + mLB = 90

We can give a valid reason for each of these statements. The

reasons, numbered to let you see which reason applies to each

statement, are as follows:

(1) This information is given.

(2) We have proved this already. Let us call it the

Triangle Angle Sum Property.

1 qt";
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(3) The measure of a right angle is 90.

(4) The cancellation law for addition.

Here is another immediate result with its proof:

The sum of the measures of the angles of a plane

quadrilateral is 360.

Figure 10.54 will help you follow the argument.

Figure 10.54

We ask you to assume that It is an interior ray of LABC and r5t

is an interior ray of LADC.

(1) mLA + mLABD + mLBDA = 180

(2) mLC + mLDBC + mLBDC = 180

(3) mLABD + mLDBC = mLABC or mLB

(4) mLBDA + mLBDC = m4.CDA or mLD

(5) mLA + mLB + mLC + mLD = 360

The reason for (1) and (2) is the Triangle Angle Sum Property.

Statements (3) and (4) have the same reason, the Betweenness-

Addition Property of Angles. (See Section 10.23 Exercise 8.)

The reason for statement (5) is: 180 + 180 = 360.

In exercises you will be asked to prove many other state-

ments which follow from the Triangle Angle Sum Property.
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10.31 Exercises

1. Find the measure of the third angle of a triangle if you

know the treasures of the first two to be as follows:

(a) 8o and 30 (b) 62 and 49 (c) 40 and 129

2. The measures of two angles of a triangle are the same.

What is their measure if the measure of the third angle is:

(a) 80 (b) 20 (c) 68 (d) 41

3. What is the measure of each angle of a triangle whose angles

all have the same measure?

4. The measures of two angles of a triangle have the ratio 3:5.

What are their measures if the third angle has a measure of:

(a) 100 (b) 68 (a) 30

5. What is the measure of an angle of a quadrilateral if the

measures of the other three angles are:

(a) 120, 80, 62

(b) 100, 62, 62

(c) 168, 72, 48

6. Show that if three angles of a quadrilateral are right angles

then the fourth angle must also be a right angle.

7. Let ABCD be a parallelogram. Show that mLA + mLB = 180 and

mLC + mLD = 180.

8. Give an argument for each of the following statements. It

need not be a step by step argument

(a) Two angles of a triangle cannot both be obtuse.

(b) If a triangle is isosceles then its base angles are

acute angles.

9. Prove each of the following. If convenient, use a step by
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step argument.

(a) If in AABC, AB = BC = CA, than mLA = 60.

(b) The figure below has 5 sides and is called a pentagon.

Assume that At, 71t are interior rays of LEAB, that

is an interior ray of LEDC, and that 'Ct is an interior

ray of LDCB. Show that the sum of the measures of the

angles of ABCDE is 540.

(c) Assume in (b) that the measures of all the angles in

ABCDE are the same. Show that each measure is 108.

10. (a) Using the data indicated in the diagram below find mLBCD

(b) Suppose mLA = 52, mLB = 65. Again find mLBCD.

(c) no the results in (a) and (b) suggest a relationship

between mLBCD and mLA + mLB?

(d) Show for all measures of LA and of LB, that mLBCD =

mLA + mLB.

11. (a) In the diagram below, find mLADC.

(b) Find the measures of the angles in which arcs are drawn,

in the same diagram.

(c) Find the sum of he measures in (b).

.1J)'



- 183 -

(d) Take another set of measures for the three angles of

quadrilateral ABCD and find the sum of the "arc" angles

for your new measures.

(e) Do your results in (c) and (d) indicate a pattern?

Complete and prove the following statement: For quadri-

lateral ABCD, mLPAD mLRCB mLSBA = ?
P

A

12. A figure such as ABCDEF has six sides and is called a hexagon.

X

(a) Find the sum of the measures of its angles.

(b) Let X be a point in Ag as shown. LCBX is called an

exterior angle of the hexagon. Find the sum of the

measures of the exterior angles of the hexagon, one

taken at each vertex.

(c) If all the angles of a hexagon have the same measure,

what is the Aleasure of each angle, and what is the mea-

sure of one exterior angle?

13. Repeat Exercise 12 for a figure having 8 sides; 10 sides.
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10.32 Summary

This chapter discussed segments, angles, and isometries.

1. The major items relating to segments are the following:

(a) The Line Separation Principle leads to subsets of lines,

open halflines and rays, and then to segments.

(b) The distance formula: If xl and x2 ale line coordinates

of A and B, then AB = Ixt - xal = lx2 xli.

(c) The midpoint formula: If xl and x2 are line coordinates

of A and B, then the coordinate of the midpoint of AB

/

1
is kx + x2) .

(d) The Betweeness-Addition Property of Segments: If B is

between A and C, then AB + BC = AC.

(e) The Triangle Inequality Property: The sum of the

lengths of two sides of a triangle is greater than the

length of the third.

2. The major items relating to angles are the following:

(a) The Plane Separation Principle leads to open halfplanes,

halfplanes, and angles, which are intersections of

half planes.

(b) The angle measure formula: Wren the center of a pro-

tractor is placed at the vertex of an angle, if Ea and

r2 are the numbers assigned by the protractor to the

two sides of the angle, the measure of the angle is

I ri r2 I = i r2 rl I

(c) Boxing the compass is accomplished by the repeated bi-

section of arcs, comparable to the bisection method
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used in graduating a ruler.

(d) Angles are classified as zero, acute, right, obtuse

and straight angles.

(e) The Betweeness-Addition Property of Angles: If V is

between Vt and M then mLAVB + mLBVC = mLAVC.

3. Isometries. A major item is: Isometries preserve angle

measure.

(a) Using line reflections we oan show:

(1) An angle is its own image under the line reflection

in its midray. This Dads to related isosceles

triangle properties, and kite properties.

(2) Every point in the midperpendicular of a line

segment is as far from one endpoint of the segment

as from the other.

(3) The rectangular coordinate formula for the reflec-

tion in the x-axis is (x, y) (x, -y), for

the reflection in the y-axis, (x, y) (-xo y).

(b) Using point reflections we can show:

(1) The measure of an angle is the same as that of its

vertical angle.

(2) The measures of opposite angles of a parallelogram

are the same.

(3) The angles in a "Z figure" have the same measure.

(4) The coordinate formula for the point reflection in

the origin of a rectangular coordinate system is

(x, Y) ( x, -Y) .

9-1
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(c) Under a translation we can show:

(1) The angles in an "F figure" have the same measure.

(2) The coordinate formula for a translation is:

(x, 1) --.(x + p, y + q), if the origin is mapped

onto (p, q).

4. Using point -reflections and translations we can show why the

sum of the measures of angles of a triangle is 180. This

leads to a long list of immediate results.

10.33 Review Exercises

1. Let a mathematical ruler assign -2 to point A and 4 to

point B.

(a) What is AB?

(b) What number does the ruler assign to the midpoint of

AB?
(c) C is a point in AB. If AC + CB = AB what are the pos-

sible assignments the ruler can make to C?

(d) If D is between A and B and AD = 2DB what is the number

assigned to D?

(e) What numbers may be assigned to point E if AE = 6 and

E is in AB?

2, In Exercise 1 replace -2, the number assigned to A, with -12

and replace 4, the number assigned to B, with -6. Answer

the questions in Exercise 1 for these replacements.

3. A protractor with center at V assigns 10 to VA and 110 to V.

(a) What is mLAVI3?

(b) What number does the protractor assign to the midray

CA)
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of LAVB?

(c) The protractor assigns 120 to Vi. Is between VI

and ?

(d) What must be true of x if x is the number assigned to

a ray that is between TA and

(e) Suppose Tt is an interior ray of LAVB, what is mLAVX +

mLXVB?

(f) Suppose W is an interior ray of LAVB such that mLAVY

= 2mLYVB. What number does the protractor assign to

W?

4. In Exercise 3 replace 10, the number assigned to 11, with

122, and replace 110, the number assigned to A with 38.

Then answer the questions in Exercise 3 for these replace-

ments.

5. Try to draw a triangle such that one of its angles is a

right angle and another is an obtuse angle. Explain how

you were able to or not able to make the drawing.

6. In a certain rectangular coordinate system A, B, and C have

coordinates (-4, 2), (1, -3) and (6, 2) respectively.

(a) What are the coordinates of A', B', C, the images of A,

B, and C, under the line reflection in the x-axis?

(b) Are A, B, C collinear? Are A', B', C' collinear?

(c) Compare AB with A'B'. Make the comparison without

finding the numbers AB and At B' and justify your answer.

(d) Compare mLABC with mLA' B1 C' after measuring each angle

with a protractor. Can you make the comparison without
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using a protractor? Justify your answer.

7. Answer the questions in Exercise 6 if A' , B', and C' are

the images of A, B, and C under the line reflection in the

y-axis.

8. Answer the questions in Exercise 6 if A' , Be, and C' are

the images of A, B, and C under the point reflection in the

origin of the coordinate system.

9. Answer the questions in Exercise 6 if A', B', and C' are the

images of A, B, and C under the point reflection in P(1, 2).

10. Answer the questions in Exercise 6 if Al, B', and C' are

the images of A, B, and C under the line reflection in the

line perpendicular to the x-axis and containing P(1, 2).

11. Consider the coordinate rule by which (x, y) is mapped onto

(y, x) in a rectangular coordinate system.

(a) Under this mapping what are the coordinates of the ima-

ges of (2, 0), (0, 4), (-1, 2), (3, 3), (-5, -2), (0, 0)?

(b) Make a graph of the points in (a) and their images.

(c) Is this mapping a line 1 mslation, a point reflection,

a translation, a point reflection, a translation, or none

of these? If it is one of these, describe it, giving

domain, range and the rule for its inverse mapping.

(d) What is the composition of this mapping with itself?

12. Consider the coordinate rule in a rectangular coordinate

system by which (x, -x). Answer the questions

in Exercise 11 for this mapping.

13. Is the mapping with coordinate rule (x, y) (2x, 2y)
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in a rectangular coordinate system an isometry?

14. Let M be the midpoint of BC in AABC. Using a point

reflection in M and a translation show how to prove that

rnLA mLB + mLC = 180.

15. Find the measure of an angle of an n-sided figure, where

all the angles have the same measure, and n has the value

given below:

(a) n = 6 (c) n = 8 (e) n = 20

(b) n . 3 (d) n . 12

16. Find the measure of an exterior angle of each n-sided

figure in Exercise 15.

17. In the figure below AB = AC, and DB = DC. Using a line

reflection, prove mLDAB = mLDAC.

-7 iv-100



CHAPTER 11

ELEMENTARY NUMBER THEORY

11.1 (N, +) and (N, )

Over the centuries many discoveries have been made concern-

ing properties that various sets of numbers possess. In this

chapter we shall concentrate on seeking out properties of certain

subsets of the whole numbers. In particular we shall examine

the set of natural numbers. (By the natural numbers, N, we mean

the whole numbers with zero deleted.)

N = (1, 2, 3, . . . )

We shall begin by stating certain basic assumptions concerning

the natural numbers. Such assumptions, that is statements which

we agree to accept as true without proof, are called axioms. We

shall use these axioms to prove other statements which we call

theorems. In fact, number theory provides us with a large source

of simple and important theorems from which we can begin to learn

some of the basic ideas dealing with "proof."

Before stating the first axiom let us recall a problem

considered in Chapter 2 (Section 2.4, Exercise 12): "Is ad-

dition an operation on the set of odd whole numbers?" It is

easy to find an example which indicates the answer to this

question is "No." Both 3 and 5 are odd whole numbers but their

sum, 8, is not an odd whole number. Because the set of odd

whole numbers is a subset of W we see that addition is not an

operation on every subset of W. Thus any statement which as-

serts that addition is an operation on a subset of W is a
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non-trivial statement. Our first axiom (Al) states that ad-

dition is an operation on N.

Al. (N, +) is an operational system.

Because 3EN and 5EN we can conclude, by Al, that 3 + 5 = 8 E N.

In general Al states that to each ordered 'air of natural

numbers addition assigns exactly one natural number called their.

SUM.

An obvious question to consider next is the following:

"Is multiplication an operation on N?" Our second axiom provides

the answer to this question.

A2. (N, ) is an operational system.

Since 3EN and 5EN we can conclude by A2 that 3.5 = 15EN. In

general, A2 states that to each ordered pair of natural numbers

multiplication assigns exactly one natural number celled their

product.

For example:

(315)-

We frequently express the above by the mathematical sentences

3.5 = 15 or 3 x 5 = 15.

Let us review florae of the language used in discussing the

operational system (N, ). In the sentence above, 3 is said to

be a factor of 15. Also, 5 is said to be a factor of 15.

Definition 1: We say that for e and b in N, a is a

factor of b if and only if there is

some natural number c such that a.c = b.

Thus 3 is a factor of 15 because there is a natural number, 5,

197
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such that 3.5 = 15. 4 is not a factor of 15 because there is

na natural number c such that .c = 15. 5 is a factor of 15

because 5.3 = 15.

Recall that in Chapter 2 you were introduced to the idea

of multiple. For the mathematical sentence

3.5 = 15

say that 15 is a multiple of 3 end also that 15 is a multiple

of 5.

Definition 2: For a and b in N, b is a. multiple of

a if and only if a is a factor of b.

Thus for the mathematical sentence

4.9 = 36

we can make the following statements:

4 is e. factor of 36

9 is a factor of 36

36 is the product of the factors

4 and 9

36 is a multiple of 4

36 is a multiple of 9

In Chapter 6 we made frequent use of the binary relation

"divides" on various sets of numbers. In this chapter we again

make use of this relation. In particular, if 4 is a factor of

36 we say that 4 divides 36 and we write

4 1 36

Definition 3: We say that for a and b in N, a divides

b if and only if a is a factor of b. We

denote "a divides b" by "a I b."

193



- 193 -

For the sentence

3.4 = ld

We can make the following statemen6:

3 is a factor of 12

3 divides 12

3 1 12

4 is a factor of 12

4 1 12

12 is a multiple of 4, etc.

Since 5 is not a factor of 12 we can say that 5 does not divide

12 (written 5 y 12).

Because 1.n = n where n is any natural number we see that 1

is a factor of every natural number. Also, every natural number

is a multiple of 1.

Question: Can we say that 1 1 n for all n in N? Explain.

You are familiar with the idea that every natural number

has many names. A number such as 12 can be renamed in many ways:

10 + 2 3.4

112 6.2

We shall use the words product expression to talk about names

such as "1.12" and "3.4" that involve multiplication. We say

that "1.12" and "3.4" are product expressions of 12. It is

possible to have product expressions for 12 with more than two

factors such as:

1.2.6 2.2.3

1.3.4 1.2.2.3

We see that we can use any of several different product expressions

199
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to represent the number 12.

Question: How many product expressions of 12 are'there

which contain exactly two factors?

Question: Is 59.509 a product expression of 30031? (The

number 30031 will be mentioned later in this

chapter in connection with en important theorem)

11.2 Exercises

1. Explain why the following are, or are not, true:

( a ) (2 + 3 ) E N

(b) (2.3) E N

(c) If a E W and b E W, then (a + b) E N

(d) If x E N and y E N, then (x + y) E N

(e) If p E N and q E W, then (pq) E N

(f) The product of two natural numbers is a natural number.

2. Complete the following sentences:

(a) If a is a factor of b, then b is e of a.

(b) If xy = z, then is a factor of

(c) If pq = r, then is a multiple of

(d) If 5 I 100, then 5 is a of 100.

(e) If 7.8 = 56, then 56 is called the

end

of

(f) If 9.7 = 63, then "9.7" is called e. of 63.

3. Determine if the following are or are not true. Explain

your answers.
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(a) 3 is a factor of 18

(b) 7 is 8 factor of 17

(c) 3 is a factor of 10101

(d) 12 is a factor of 96

(e) 30 is a factor of 510

(f) 1 is a factor of 3

(g) 8 is a factor of 8

(h) 65 is a multiple of 13

(i) 91 is a multiple of 17

(j) 5402 is a multiple of 11

(k) 10 is a. factor of 1000 because 10.100 = 1000

(1) 16 is a factor of 8 because 8.2 = 16

4. Determine if the following are or are not true. Explain

your answer.

(a) 3 139

(b) 17 1 91

(c) 8 1 4

(d) 1 1 4

(e) 13 1 65

(f) 3 1 6, 3 1 12 and 3 1 18

(g) 2 1 n where n is any even natural number

(h) n 1 n where n is any natural number

(i) n 1 n' + 3n for all n in N

5. For the following numbers determine all product expressions

which contain exactly two factors.

(a) 6

-(b) 7 201
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(e) 13

(f) 2

(g) 3

(h) 35

(i) 36

(j) 37

11.3 Divisibility

In this section we shell consider how some sentences

dealing with natural numbers can be established as theorems. An

example of such a sentence is the following:

If a is an even naturai number and b is an even natural

number then a + b is an even natural number. Our goal is to

prove that a + b must be an even natural number whenever a and

b are even natural numbers. In order to prove this some addi-

tional axioms for (N, +, ) are needed. Rather that just stat-

ing those axioms needed to prove the above sentence, we now re-

cord a number of additional axioms for (N, -) which may be

used to prove many other theorems.

A3. For all a and b in N, a + b = b + a and a-b = bee.

A4. For all a, b, and c in N,

a (b c) = (a. + b) c and a.(b.c) = (ab) c.

A5. For all a, b, and c in N,

a(b + c) = (ab) + (ac).

A6. For all e in N, a1 = 1e = a.

Question: What familiar names do we give to the axioms

A3 - A6?

Besides these properties of natural numbers, we will

make frequent use of a general logical principle called the

Replacement Assumption.
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The mathematical meaning of an expression is not changed

if in this expression one name of an object is replaced by

another name for the same object.

As an illustration, consider the use of the cancellation proper-

ty in solving the equation 7.2 + x = 46. Another name for 46 is

(7.2 + 38.8). Therefore, using the Replacement Assumption, we

can write

7.2 + x = 7.2 + 38.8

and conclude that x = 38.8

There are two specific ways in which the replacement assump-

tion will be used in establishing proofs of sentences about the

natural numbers. These are contained in the following theorem.

Theorem A. If a, b, c, and d are natural numbers such

Proof:

that a = b and c = d, then

1. a+c=b+ d

ac = bd

1. Clearly, a + c = a + c. Since c = d means

that "c" and "d" are two names for the same

object, we can replace any "c" by "d" without

changing the mathematical meaning of the ex-

pression involved. Using this replacement we

have a + c = a + d. Similarly, since a = b

means that "a" and "b" are names for the same

object, we can replace any "a0 by "b" without

changing the mathematical meaning of the ex-

pression involved. Therefore, a + c = b + d.

2,03
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Note that the two replacements were made for

the "a""md "c" to the right of the "=" in

a + c a + c.

2. To show that ac = bd we proceed in a similar

manner. Certainly ac = ac. Replacing "c"

with "d" and "a" with "b" to the right of the

"=" we obtain ac = bd.

Let us now consider how we can prove the sentence about

even natural numbers with which we began this section. Before

beginning the proof we note that a natural number n is defined

to be even if and only if 2 I n. Our proof proceeds es follow).

Since a is on even natural number, we know that 2 I a or

that 2 is a factor of a. By Definition 1 this means that there

is a natural number x such that a = 2.x. Similarly, since b is

an even natural number, 2 I b and there is a natural number y

such that b = 2y. Then, by the first part of the Theorem A,

a + b = 2.x + 2.y. But 2x + 2y = 2.(x + y) by the Distributive

Property, A5. Hence, we may use the replacement assumption to ob-

tain a + b = 2.(x + y). Since x E N and y E N then, by Al, (x + y)

E N. We see that rccording to Definition 1 this means that

2 I (a + b). Hence a + b is an even natural number and the proof

is complete.

We can also express the above in the following manner using

"parallel columns." That is, statements used in the "proof" ap-

pear in the left column and justifications of these statements

appear in the right column.

204
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Theorem: If 2 1 a and 2 1 b, then 2 1 + b), where a

and b are natural numbers.

Proof:

1. 2 1 a and 2 1 b 1. Given

2. a = 2x and b = 2y where 2. Definition 1

x, y E N

3. a + b = 2x + 2y 3. Theorem A

4. 2x + 2y = 2(x + y) 4. A5

5. a + b = 2(x + y) 5. Replacement

Assumption

6. (x + y) E N 6. Al

7. 2 1 (a + b) 7. Definitions 3

and 1

We call the cove "a proof" of the theorem

If 2 1 a and 2 1 b, then 2 1 (a + b). (1)

We mean that we have shown that the conditional sentence (1) (i.e.,

a sentence of the if p, then q" type) is true fox' all values of

the variables a and b. It is possible to generalize sentence (1)

to obtain

If c 1 a and c 1 b, then c 1 (a + b)

where a, b, c E N (2)

In order to give a proof of (2) one must show that it is true for

all natural numbers 2) 12) and c. (This will be asked for in an

exercise.)

Question: Would sentence (2) be proven as a theorem if we

proved it true for c = 3?

We have settled the question concerling the sum of any two

2.05
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even natural numbers. But what can be said concerning the prod-

uct of two such numbers? A little experimentation (e.g., 2.4 = 8,

6.8 = 48, etc.) suggests the following theorem:

Theorem: If 2 1 a and 2 1 b, then 2 1 (ab), where

a and k are natural numbers.

A proof follows, just like the one for the last theorem.

Cover up the reasons for the proof and see if you can supply them

yourself. Look if you feel you have to or if you want to check

your reasons.

Proof:

2 1 a and 2 1 b

a = 2x and b = 2y where

x, y E N

1.

2.

Assumption

(or given)

Definitions 3

and 1

1.

2.

3. ab = (2x)(2y) 3. Theorem A

4. (2x).(2y) = 2[x.(2y)] 4. A4

5. a.b = 2[x(2y)] 5. Replacement

[Statement 3 & 4]

6. (x(2y)] E N 6. Statement 2 and A2

7. 2 ! (ab) 7. Definition 1

Sometimes we use a single letter symbol, such as "p" or

"q" to represent a whole phrase or sentence. Thus we may write:

"Two divides a and two divides b" in the shorter form

"2 1 a and 2 1 b"

or replace this expression by the symbol "p" where

"p" means "2 1 a and 2 1 b."

Similarly we could use "q" to mean "2 1 ab" or "two divides the
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product of a by b." Thus we can represent the preceding theorem

by

If p, then q.

We refer to "p" as the "hypothesis" and to "q" es the

"conclusion."

In order to prove (3) we assume that p was true. That is,

we assumed that the hypothesis "2 1 a end 2 1 b" was true.

Then, using our axioms and definitions, we proceeded to establish

that the conclusion "2 1(ab)" was true.

The direct method of proof is one of several accepted

methods of establishing mathematical sentences as theorems. Of-

ten the direct method is not the simplest way to prove a sentence

true. Another method of proof, called the indirect method, is

useful in many instances. To illustrate the method we shall ap-

ply it to proving the following theorem.

Theorem: If a and b are natural numbers, and ab is

an odd natural number, then a and b are both

odd natural numbers. (4)

(An odd natural number is any natural number

that is not even.)

Proof:

As before, we begin by assuming that ab is en

odd natural number. But rather than using this

fact directly we now ask whether it is possible

for one of a or b to be even? To answer this

question we consider first the possibility that

a is even. If a is even, a =2.x, x E N. Then,

ab = (2x)b = 2(xb) which means that ab is
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even. But ab is odd. Hence, a cannot be even.

Hence n must be odd. In a similar fashion we

see that b cannot be even. Therefore, both a and

b must be odd if ab is odd, and our proof is

complete.

In order to prove (4) we assumed that the hypothesis was

true, that ab was odd. Then we considered the possibility that

the conclusion might be false, that is, that a was even or was

even. In either case this could not be true because it meant

that e.b was even. We thuG reasoned that the conclusion must be

true.

The above proof concerning odd natural numbers made use of

the definition of odd natural numbers as natural numbers which are

not even. It is possible to give a more satisfactory definition of

odd numbers. For this definition we will need to revIew some ideas

studied in your earlier work with arithmetic. In particular re-

call that when you were asked to divide a natural number by

another natural number you frequently expressed the answer in

terms of a quotient and a remainder. Consider the following two

displays of work done to divide 15 by 2:

6 7
2 15 2 1-13-

12 147 1
In both displays we obtain a quotient and a remainder. On the

left we have a quotient 6 and a. remainder 3, whereas on the right

we have a quotient 7 and a remainder 1. For the display on the

left we have:

15 = (6.2) + 3

203
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For the display on the right we have:

15 = (7.2) + 1

In a sense we have two "answers" for our division problem in-

volving a quotient and a remainder. We resolve this situation

of not having a unique answer by saying that we will accept only

that result in which the remainder is a whole number and is less

than the divisor. Then the display on the left is unacceptable

because the remainder 3 is not less than the divisor 2. The

question of whether we can always find exactly one quotient and

exactly one remainder when a whole number is divided by a natural

number is answered by the follol.ing axiom which is known as the

Division Algorithm.

A7. Let a be a whole number and b be a natural number.

Then there is exactly one pair of whole numbers g

and r such that

a= (qb) + r with 0 < r < b.

Example 1: Let a = 39 and b = 9. Then the division al-

gorithm (A7) guarantees that whole numbers 2

and r exist such that

39 = (q9) + r with 0 < r < 9.

In fact if we let q = 4 and r = 3 we have

39 = (4.9) + 3 with 0 < 3 < 9.

Moreover, the division algorithm guarantees

that q = 4 and r = 3 are the only whole num-

bers which satisfy

39 = (q9) + r with 0 < r < 9.

209
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Example 2: Consider a case where a is less than b.

If a = 8 and b = 17, then

8 (0.17) + 8

where the quotient is 0 and the remainder is

8. Note that the remainder is a whole number and

is less than the divisor. That is 0 < 8 < 17.

Example 3: If a whole number is divided by 2, the division

algorithm guarantees that there exists exactly

one pair of whole numbers a and r such that

a= (q.2) + r where 0 5 r< 2.

It is clear that the only possible values of r

are 0 and 1. Thus we have

either

or

a = (q2) + 0 (1)

a = (q.2) + 1 (2)

We can use the above to give us the following:

Definition 4: (a) n is an even whole number if and only if

n can be expressed as n = (q.2) + 0, where

g is some whole number.

(b) n is an odd whole number if and only if n

can be expressed as n = (q.2) + 1, where

q is some whole number.

In other words, an even whole number is twice some whole

number, while an odd whole number is one more than some even

whole number.

It is easy to establish the following:

Let E = (x ( x is an even natural number)

210
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211
and 0 = (y I y is an odd natural number).

Theorem: (a) If a E E and b E 0, then (a + b) E 0.

(b) If a E 0 and b E 0, then (a + b) E E.

(c) If a E E and b E 0, then (ab) E E.

(d) If a. E 0 and b E 0, then (ab) E 0.

The proof of the above will be called for in the exercises.

We conclude this discussion of odd and even natural numbers

with a theorem whose proof makes use of Definition 4 and the

above theorem. It also illustrates a method of proof sometimes

called proof by cases.

Theorem: If n and n + 1 are natural numbers, then n(n + 1)

is an even natural number.

Proof: n(n + 1) = n2 + n (by A5 and by definition of n2).

(1) If n is even, then ne is even. If n and n2

are even, then n2 + n, as the sum of two

even natural numbers, is even.

(2) If n is odU, nP is odd, and if n and n2 are

odd, then n2 + n, as the sum of two odd natu-

ral numbers, is even.

Hence, in either case (1) or case (2), n2 + n is

even. Since n(n + 1) = n2 + n, n(n + 1) is even.

Question: Why does the above proof consider only two cases?

11.4 Exercises

1. Complete the following:

(a) a = (qb) + r, 0 < r < b, is called the

(b) (x + 1) y = xy + y follows from
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(c) 7.1 = 7 follows from

(d) Ifx=yandp= q, thenx+p=y+qfollows

from

(e) 7 is an odd natural number because

(f) If a is an odd natural number, then a =

(g) If q is false implies p is false, then

(h) If k E N and i E N, then (k,i) E N follows from

2. Find all possible pairs of whole numbers 2 and r such that

13 = (3.q) + r. Which of these pairs are the quotient and

remainder of the division algorithm? For which case (s)

does r satisfy 0 < r < 3?

3. (a) Prove if 3 1 a and 3 1 b, then 3 1 (a + b), where

a, b, E N.

(b) Prove if c 1 a and c 1 b, then c 1(a + b), where

a, b, c E N.

4. Prove if a 1 b and b 1 c, then a 1 c where a, b, c E N.

5. Prove if a 1 b, then a 1(bc), where a, b, c E N.

6. Let E and 0 represent respectively the set of even natural

numbers and the set of odd natural numbers.

Prove: (a) If a E E and b E 0, then (a + b) E 0.

(b) If a E 0 and b E 0. then (a. + b) E E.

(c) If a. E E and b E 0, then (ab) E E.

(d) If a E 0 and b E 0, then (ab) E 0.

7. Find three odd numbers totaling 30, or else prove that no

such odd numbers exist.

8. Examine each of the statements (a), (b), and (c). If the

statement is false then exhibit a counterexample. If the

212
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statement is true then list all the assumptions that you

need in order to complete a proof of the statement.

(a) If a. 1 b, then a I(b + c).

(b) If a. I b, then a 1(bc).

(c) If a. I (b + c) and a I b, then a. I c.

9. In this problem we consider some tests that may be applied

to divisibility questions involving base ten. These tests

will generally fail when numbers are represented with nu-

merals in bases different from ten.

Assume the following is true for natural numbers a, b ,

b , b
m

:

Ifalb,aIb, ...,aIb and
1 2 rn-1

if a I (b + b + b
m-1

+ b
m

) then a I bm.

Also note that any natural number Mcan be written in the

form N = a
n 10

n + a 10n-1 + + a 102 + a . 10 + a ,n-1 2 1 0,

where ao, al , ..., a
n and n are natural numbers.

(a) Prove that a natural number is divisible by 2 if and

only if the last digit of its (base ten) numeral is.

even.

(b) Note 3 1 (10-1), 3 (102-1), 3 I (103-1), etc. As-

sume 3 I (10k-1) where k is any natural number. Prove

a natural number is divisible by 3 if and only if the

sum of the digits of its (base ten) numeral is divi-

sible by 3. [Hint: 10k = 10k - 1 + 1.]

(c) Discover a decimal numeral test which indicates when a

number is divisible by:

(1) 4 (2) 5

213
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(3) 6 (5) 9

(4) 8 (6) 10

(d) Prove any cf the results you have discovered in (c).

11.5 Primes and Composites

It is obvious that the natural number 8 has more factors

than the natural number 7. The set of factors of 8 is (1, 2,

4, 8) whereas the set of factors of 7 is (1, 71. It is not herd

to find other natural numbers like 7 which have exactly two dis-

tinct numbers in their factor set. For example, 11 is such a

number since the set of factors of 11 is (1, 11). 2 is another

natural number with precisely two numbers in its set of factors.

Such numbers as 2, 7, and 11 are called prime numbers. In gen-

eral, we have the following:

Definition 5: A natural number is said to be a prime num-

ber if the number has two end only two dis-

tinct factors -- namely, 1 and the number

itself.

Example 1: 3 is a prime number since the only factors

of 3 are 1 and 3.

Example 2: 31 is a prime number since the only factors

of 31 are 1 and 31.

Example 3: 91 is not a prime number because 91 = 7 x 13.

That is, 91 has factors other than 1 and 91.

Example 4: 1 is not a prime number. What in the defi-

nition of prime number determines that 1 is

not a prime?
C 1
41'1
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We see from Example 4 that the smallest prime number is 2.

Are the multiples of 2 which are greater than 2 prime numbers?

We know that 4 is a multiple of 2. But 4 cannot be a prime num-

ber because it has a factor other than 1 and itself, namely 2.

Similarly, 6, being a multiple of 2, has a factor, 2, other than

1 and 6 and thus cannot be a prime number. In general, no mul-

tiple of 2 except 2 can be a prime number. Why?

What about multiples of the prime number 3? Can they ever

be prime numbers? If we examine any multiple of 3 greater than 3,

say 9 or 21 or 3000, we see that every such multiple has a factor

other than 1 and itself, namely 3. In short, there are many natu-

ral numbers which are not prime. We call numbers of this type

composite numbers. A composite number always has numbers in its

factor set besides 1 and the number itself. The factor set for

the composite number 9 is (1, 3, 9).

Definition 6: A natural number is a composite number, if

it is not 1, and it is not a prime number.

Example 1: The natural number 51 is a composite number.

Clearly 51 is not 1. Also, 51 is not a prime

number because it has the factors 3 and 17.

We note that the factor set of 51, (1, 3, 17,

51), has more than two elements.

Example 2: All multiples of 5, except 5, are composite.

That is (10, 15, 20, 25, 30 ...) consists of

composite numbers. Why?

Example 3: The natural numbers 90, 91, 92, 93, 94, 95, 96,

c15
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98, and 99 are all composite. Check that

97 is a prime number.

From the remarks and examples above it can be seen that we

now have a partition (see Section 8.15) of the set of natural

numbers into three disjoint subsets. These subsets are the

following:

(i) the set consisting of 1 alone, that is (1).

(ii) the set of prime natural numbers.

(iii)the set of composite natural numbers.

11.6 Exercises

1. Complete the following sentences:

(a) If a natural number is a prime number, then its factors

are

(b) If a natural number is not a prime number, then it is

(c) If a natural number is a prime number, then it has

elements in its set of factor3.

(d) If a natural numinr is not a prime number, then it has

elements in its factor set.

2. List the set of factors for the following natural numbers:

(a) 10 (e) 34

(b) 13 (f) 35

(c) 12 (g) 36

(d) 24 (h) 37

3. Determine which of the numbers given in Exercise 2 are

(a) prime; r...1
4;1. t)
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(b) composite;

(c) both prime and composite.

4. What can be said about every multiple of a prime number

which is greater than that prime number?

5. (a) What is the greatest prime number less than 50?

(b) What is the smallest compos±te number?

6. What can be said about the product of two prime numbers?

7. (a) List the set of all even prime numbers.

(b) List the set of all odd prime numbers less than 20.

8. Re-examine the definition of composite number. Try to

formulate a different definition which makes use of the

term "factor" or "factor set"?

9. Find three composite numbers, each of which has

(a) 3 numbers in its factor set;

(b) 4 numbers in its factor set.

11.7 Complete Factorization

As you continue your study of the set of natural numbers

and their properties you will frequently have to examine the fac-

tors that make up the product expressions of a natural number.

What can we say about the factors that make up the product ex-

pressions of prime numbers? We have seen that

2 = 1.2

3 = 1.3

5 = 1.5, etc.

By the definition of prime numbers the only factors a prime 2, has

are 1 and 2. However, we find that every composite number can be
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renamed as a product expression other than 1 times the number.

For example, 20 can be renamed using either of the following

product expressions:

2.10 (1)

4.5 (2)

These product expressions of 20 can be shown in another way:

/g\

2 x 10 4 x 5

On the left we have a tree diagram to represent (1) and on the

right a tree diagram to represent (2). It is possible to

continue each of the above diagrams by completing another row to

indicate product expressions of 20 as follows:

\//\\
2 x 10 4 x 5

1
2 x 2

\
x 5 2 x 2 x 5

We see that every number named in the last row of both diagrams

is a prime number. (We shall refer to such tree diagrams as

factor trees.) Moreover, the last row in both factor trees con-

tain exactly the same prime numbers. Thus, starting with either

of the product expressions (1) or (2) of 20 we obtain exactly the

same prime product expression of 20. In this case we see that 20

21.8
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has a product expression such that each factor that makes up the

product expression is a prime number. We shall describe this

situation by saying that 20 is expressed as a product of prime.

factors.

Our attention is directed to the following questions:

Can every composite number be expressed as a product of

prime factors? In other words, does there exist a product ex-

pression for each composite number in which each factor is a

prime number? Furthermore, is there only one such product ex-

pression?

The following factor trees for 36 suggest that the answer

to the above questions should be "Yes."

3 x 12 2 x 18 6 x 6

3x3x, 2x2x9 2x x2x3

/ A3 x3 x2 x2 2x x3x3

We note again that the last row in each of the above factor trees

is a product expression for 36 in which each factor is a prime num-

ber. Moreover, the same set of factors appear in each product ex-

pression. Note that the order of the factors in each of the last

rows of the factor trees is different. Is this change in the or-
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der of the factors a significant change? The answer is "No."

Because multiplication is commutative and associative in (N, ),

the fact that they are arranged in different order is immaterial.

Thus, using exponents, we can express the last row in each of the

above tree diagrams as:

2P 32

When a composite number is expressed as a product of prime

factors, we refer to this as a complete factorization of the

given number.

The following are examples of complete factorizations:

72 = 2.36

= 2.2.18

= 2.2.2.3.3

182 = 2.91

= 2.7.13

150 = 2.75

= 2.3.25

2.3.5.5

Notice that when each factor in the final product expression is

a prime number then we say that the product expression for com-

plete factorization has been found.

One important question that can be asked is the following:

If a composite number has a complete factorization, could it have

a second complete factorization involving different prime numbers?

All the examples considered above seen to indicate that there is

only one complete factorization for a given composite number.
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For example consider:

150 = 2.3.5.5

If you experiment with other possible prime factors, such as 7,

11, 13, etc., you will find that the above is the only complete

factorization of 150.

The above examples illustrate one of the most important

and fundamental properties of the set of natural numbers. The

property is called Unique Factorization of the Natural NumbersA

Every natural number greater than 1 is either a prime

or can be expressed as a product of primes in one and

only one way, except for the order in which the factors

occur in the product.

We shall see how this property can be used to solve, in a new

way, a problem that yov met earlier in this course.

There was an exercise in Chapter 2 (see Section 2.2, Exer-

cise 12) in which you were to find the greatest common divisor

of 24 and 16. It turns out that finding the greatest common di-

visor of two natural numbers is equivalent to finding the greatest

common factor of the two numbers. We can redefine a greatest com-

mon divisor of two natural numbers using the terminology of this

chapter.

Definition 7: The greatest common divisor (abbreviated

g.c.d.) of two natural. numbers, a and b, is

the largest natural number d such that d 1 a

and d I b. d is written as g.c.d. (a,b).

21
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In chapter 2 you found g.c.d. (24, 16) essentially as follows:

A = (1, 2, 3, 4, 6, 8, 12, 24)

The set of factors of 16 we will call B:

B = (1, 2, 4, 8, 16)

Then

A n B = (1, 2, 4, 8)

is the set of common factors (divisors) of 16 and 24. Clearly

8 is the greatest common divisor of 24 and 16. That is, g.c.d.

(24, 16) = 8. We see that 8 is the greatest natural number such

that 8 I 24 end 8 I 16.

Question: Why will 1 always be an element in the intersec-

tion of the factor sets of two natural numbers?

A second solution to the above problem is as follows: By

the unique factorization property of natural numbers we know that

both 24 and 16 cap_be expressed as a product of primes where the

factors of the product are unique. In fact we have 24 = 2.2.23

and 16 = 2'2'2'2. We see that the product expression 2.2.2 is

common to both factorizations and yields the greatest common di-

visor 8. This technique is useful when the numbers are small.

For example, to find g.c.d. (45, 108) we determine that

45 = 32.5

and 108 = 22.32
a

We see that 3 = 9 is the greatest common divisor of 45 and 108.

11.8 Exercises

1. Factor the numbers listed in as many ways as possible using

222
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only two factors each time. We shall say that 2.3 is not

different from 3'2 because of the commutative property of

multiplication in (N, ').

(a) 9 (c) 15

(b) 10 (d) 100

(e) 24 (g) 72

(f) 16 (h) 81

2. Write a complete factorization of

(a) 9

(b) 10

(c) 15

(d) 100

(e) 24

(f) 16

(g) al

(h) 210

(i) 200

(j) 500

3, What factors of 72 do not appear in a complete factoriza-

tion of 72?

4. What will be true about the complete factorization of every

(a) even natural number?

(b) odd natural number?

5. Construct at least two factor trees for each of the follow-

ing:

(a) 24

(b) 96

(c) 625

(d) 1000

6. Find the greatest common divisor of the following pairs of

numbers by making use of their complete factorizations:

(a) 70 and 90

(b) 80 and 63
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(c) 372 and 90

(d) 663 and 1105

7. Determine if g.c.d, is a binary operation on N. If it is,

explore its properties. If it fails to be a binary opera-

tion on N, explain why it fails.

8. Copy the following table for natural numbers and complete

it through n = 30.

n Factors of n Number of factors Sum of factors

1 1
2 1,2
3 1,3
4 1,2,4
5 1,5
6 1,2,3,6
7 1,7
8 1,2,4,8

1 1
2 3
2 4
3 7
2 6
4 12
2 8
4

(a) Which numbers represented by n in the table above have

exactly two factors?

(b) Which numbers n have exactly three factors?

2 ,

(c) If n = p (where p is a prime number), how many factors

does n have?

(d),If n = pq (where E. and a are prime numbers and not the

same), how many factors does n have? What is the sum

of its factors?

(e) If n = 2
k

(where k is a natural number), how many fac-

tors does n have?

(f) If n = 3k (where k is a natural number and 2 is a prime),

how many factors does n have?

(g) If n = pk (where k is a natural number and 2 is a prime),

how many factors does n have?

30,1
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(h) Which numbers n have 2n for the sum of their factors?

(These numbers are called perfect numbers.)

9. If we list the set of multiples of 30, we obtain (30, 60,

90, 120, 150, 180, ...). Also, if we list the set of mul-

tiples of 45, we obtain (45, 90, 135, 180, 225, 270, ...).

We see that a common multiple of 30 and 45 is 180.

However, there is a common multiple which is the least

common multiple of 30 and 45; namely 90. We write this

as l.c.m. (30,45) = 90

(a) Examine the complete factorizations of 30 and 45 and

explain how one could use these to find that the least

common multiple of 30 and 45 is 90.

(b) Similarly, find the least common multiples of the fol-

lowing pairs of numbers by making use of their complete

factorizations:

(1) 30 end 108 (4) 81 and 210

(2) 45 and 108 (5) 16 and 24

(3) 15 and 36 (6) 200 and 500

(c) Can you find any relationship between the greatest com-

mon divisor (g.c.d.) of a and b and the least common

multiple (l.c.m.) of the same a and b? Experiment and

write a report on your findings.

10. Determine if l.c.m. is a binary operation on N. Write a re-

port of your findings.

11.9 The Sieve of Eratosthenes

The fact that every composite number can be expressed as Nlori
,(4"
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product of primes in one and only one way, except for order, in-

dicates that the prime numbers are the basic elements, the

atoms so to speak, in the structure of the natural numbers by

multiplication. If we wish to have a basic understanding of mul-

tiplication of natural numbers (and division, which is defined in

terms of multiplication), then it is to our advantage to be aware

of some properties of the set of prime numbers.

A list of all the primes up to a given natural number N may

be constructed as follows: Write down in order all the natural

numbers less than N. We have done this below for N = 52. Then

strike out 1 because by definition it is not a prime. Next,

encircle 2 because it is a prime number. Then strike out ell re-

maining multiples of 2 in the list, that is, 4, 6, 8, 10, etc.

Such multiples of 2 are, as we discussed earlier, composite num-

bers.

Next encircle 3, the next number we encounter in our list.

After 3 is encircled, we strike out 6, 9, 12, ..., that is, all

multiples of 3 remaining in the list. (Note that 6 was struck

out when we considered multiples of 2.) In a similar way we con-

tinue this process by next encircling 5 and striking out its re-

maining multiples. Lastly we encircle 7 and strike out its

remaining multiples.
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a,4

0

1,6

44 46 46

3/4 36 34

44 46 46

R

f?' 46

gt ?8 f§ 36

3 38 46

48 0 9O

Note that if we encircle all the numbers remaining in the

list we obtain all the prime numbers less than N = 52. In all

there are 15 such prime numbers obtained by this process, known

as the Sieve of Eratosthenes. The sieve catches all the primes

less than N in its meshes.

Complete tables of all primes less than 10,000,000 have

been computed by this method and refinements of this method.

Such tables are useful in supplying data concerning the distri-

bution and properties of the primes.

Even the small list constructed above gives some indication

that the primes are not distributed in any sort of obvious

way among the natural numbers. Also, we see that it may happen

that a number, p) is a prime and p + 2 is also a prime. Such

pairs of primes are called twin primes. Examples of twin primes

in the list above include 11 and 13, 17 and 19, 29 and 31, 41

and 43.

11.10 Exercises

1. (a) In the above list, what was the first number struck out

that had not previously been struck out when we sieved

)014
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(1) multiples of 2

(2) multiples of 3
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(3) multiples of 5

(4) multiples of 7

(b) Can you make a conjecture concerning the first number struck

out if we sieve for multiples of a prime 2?

(c) Explain why we did not have to sieve for multiples of the

prime 11?

(d) What is true of all numbers that

(1) pass through the sieve?

(2) remain in the sieve?

(e) Would any new numbers be crossed out if we sieved for mul-

tiples of 4? Why or why not?

2. Make up a list of natural numbers less than 131.

(a) Carry out the Sieve of Eratosthenes process on this

set of numbers.

(b) How many primes are there less than 101?

(c) How many primes are there less than 131?

(d) What is the largest prime number in your list?

(e) What is the largest prime, p, for which you had

to determine multiples in the sieving process? Explain.

3. (a) List the pairs of prime numbers less than 100 which

have difference of 2.

(b) What name is given to such pairs?

(c) How many such pairs are there less than 100?

4. Make up a list of numbers which goes from 280 through 290.

(a) Apply the Sieve of Eratosthenes process to this list.
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(b) List all the primes obtained from this sieving.

(c) For which primes did you have to seek multiples?

(d) Explain why you selected a certain prime as the

largest for which you sought multiples.

5. (a) List the triplets of prime numbers less than 131 in

which the succeeding numbers differ by 2. Such

triplets are called prime triplets.

(b) After you have found the smallest set of prime trip-

lets, explain why no other distinct set of prime trip-

lets could have 3 as a factor of one of its numbers.

(c) Assume that there is a second set of prime triplets.

Call them p, p + 2, p + 4. From (b) we know that

p 3k where k is some natural number larger than 1.

Why?

(d) If p / 3k, then what is the remainder obtained when

p is divided by 3?

(e) Can you examine p + 2 and p + 4 and prove that p, p + 2,

and p + 4 are not all primes if p > 3?

(f) What conclusion can you draw from (a) - (e)?

11.11 On the Number of Primes

Euclid (circa 300 B.C.) answered the following question:

Is there a finite or an infinite number of prime numbers? As you

work with the sieve of Eratosthenes you probably note that as you con-

tinue sieving the primes become relatively scarce. However,
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Euclid proved that, as one continues to examine the set of nat-

ural numbers, primes will always be encountered if we seek long

enough. He proved that the are an infinite number of primes.

Euclid's argument proceeds as follows: Assume there is a

largest prime. Let us denote this largest prime as "P." All

the primes can then be written in a finite sequence

2, 3, 5, 7, P.

Since P is the largest prime, all numbers greater than P must be

composite; that is, every number greater than P must be divisi-

ble by at least one of the primes in the above sequence. But

now consider the number

N = (2.3.5.7. ....P) + 1.

that is, the number obtained by adding 1 to the product of all

the primes. Since N is greater than P, it must be a composite

number, and therefore divisible by at least one of the primes

in the above sequence. But by which? It can be argued that N

is not divisible by any of the primes 2, 3, 5, 7, ..., P, since

dividing N by any of the primes yields a remainder of 1. Hence

N cannot have any prime factors, which contradicts the fact that

N is composite. Therefore, the assumption that the number of

primes is finite leads to a contradiction, and we must conclude

that there are an infinite number of primes.

It is interesting to note that it is not known whether the

number of prime twins if finite or infinite. Unlike the situa-

tion for the primes, efforts to determine whether the number of

prime twins is finite or infinite have not proved successful.
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Another famous unsolved problem also deals with primes.

It is called Goldbach's Conjecture. Goldbach stated, in a let-

ter to Euler in 1742, that in every case that he tried he found

that any even number greater than 2 could be represented as the sum

of two primes. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3,

etc. No one has yet been able to prove or disprove this con-

jecture of Goldbach. The problem posed in the conjecture is

interesting because (1) it is easily stated and (2) it in-

volves addition whereas primes are defined in terms of multipli-

cation. In any case, it has resisted solution for over two hun-

dred years.

11.12 Exercises

1. Show that the following numbers all satisfy Goldbach's con-

jecture:

(a) 10

(b) 12

(c) 14

(d) 16

(e) 18

(0 20

(g) 36

(h) 48

(i) 100

(j) 240

2. In working with Euclid's proof that the set of primes is

infinite we find that possible values of N include 2 + 1,

2.3+ 1, 2.3.5 + 1, 2.3.5.7 + 1, 2.3.5.7.11 + 1, 2.3.5.7.

11.13 + 1, 2.3.547-11.13.17 +1.

(a) Explain how each of the numbers in the above list was

formed. In each case what is P? What is N?
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(b) The first 5 numbers in the list are primes. Compute

then and verify that at least 4 of them are in fact

primes.

(c) Note that 235'71113 + 1 = 30031 and this number

is composite because 30031 = (59)(509). Verify this.

(d) Prove that 2.305.7.11.1317 + 1 is a composite number.

(Hint: Be efficient '.)

(e) Discuss Euclid's argument with regard to the number

shown in (d).

(f) Explain why a computer could never settle the question

concerning the number of twin primes.

11.13 Euclid's Algorithm

We have seen that one way to find the g.c.d. of two natural

numbers is to begin by expressing each of the numbers as a product

of prime factors. However, this is not practical when the numbers

considered are quite large. A method which is often used to find

the g.c.d. of two large numbers is based on repeated use of the

division algorithm.

We illustrate this by considering th3 problem of finding

the g.c.d. of 28 and 16. By applying the division algorithm we

have

28 = (1.16) + 12 where 0 < 12 < 16.

Note that if a 1(b + c) and a 1 b, then a 1 c. Thus any number

that divides 28 and 16 must also divide 12. Thus the g.c.d.

(28, 16) must divide 12. Let g.c.d. (28, 16) = d. Then d 112
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implies d is a common divisor of 16 and 12.

Also

d = g.c.d. (16, 12)

because if there was a larger divisor of 16 and 12 it would di-

vide 28 and then d would not be g.c.d. (28, 16). Hence, we have

g.c.d. (28, 16) = g.c.d. (16, 12). We continue the process by

using the division algorithm again to obtain

16 = (1.12) + 4 where 0 < 4 < 12

By the same argument as above we have g.c.d. (16, 12) = g.c.d.

(12, 4). Therefore, g.c.d. (28, 16) = g.c.d. (12, 4). Lastly,

we apply the division algorithm to obtain

12 = (3.4) + 0

and we see that the g.c.d. (12, 4) = 4

Thus g.c.d. (28, 16) = 4.

The following example illustrates the algorithm indicated above:

Example: Find the g.c.d. of 7469 and 2387

g.c.d. (7469,

7469 = 2387.3

2387) = g.c.d.

+ 308

(2387, 308)

2387 = 308.7 + 231

g.c.d. (2387, 308) = g.c.d (308, 231)

308 = 231.1 + 77

g.c.d. (308, 231) = g.c.d. (231, 77)

231 = 77.3 0

g.c.d. (231, 77) = 77

Thus g.c.d. (7469, 2387) = 77

Note that we first divide the larger number, 7469, by the

smaller number, 2387, and find,the remainder 308 (which is less
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than the smaller number). Next we divide the smaller number by

this remainder 308 and find a new remainder 231. Now we divide the

first remainder 308 by the new remainder 231 and find the third

remainder, 77. We continue this division until we obtain a remainder

0. The last non-zero remainder thus found is the g.c.d.

The procedure of computing the g.c.d. by successive appli-

cations of the division algorithm is known as Euclid's Algorithm.

It can happen that when we find the g.c.d. of two numbers

it turns out to be 1. For example, it is clear that

g.c.d. (5, 13) = 1

and with a little work we can see that

g.c.d. (124, 23) = 1

Such pairs of numbers whose g.c.d. is 1 play an important role

in Number Theory.

Definition 8: If the greatest common divisor of two natural

numbers a and ja is 1, we say that a and 1.

are relatively prime.

Thus 5 and 13 are relatively prime since g.a. d. (5, 13) = 1.

Similarly 124 and 23 are relatively prime. We shall use the idea

of two numbers being relatively prime in our next axiom.

A8. If d = g.c.d. (a,b), then there exist integers x and

x: such that

d = xa + y.b

In particular, if a and b are relatively prime, there

exist integers x and y such that 1 = xa + y.b.

Example 1: g.c.d. (72, 86) = 2 and 2 = 6(72) + (-5)(86).

Here x = 6 and y -5.

234



No

- 229 -

Example 2: g.c.d. (7, 5) = 1 and 1 = 3(7) (-4)(5).

Here x = 3 and y = -4.

Example 3: g.c.d. (147, 130) = 1 and

1 = 23 (147) + (-26)(130).

Here x = 23 and y = -26.

We will use A8 next to prove an important theorem which will en-

able us to prove a number of other theorems that tie together the

ideas of "prime" and "divisibility."

Theorem: If a I be and g.c.d. (a,b) = 1, then a I c.

Proof: Since g.c.d. (a,b) = 1, then, by A8 there are in-

tegers x and y, such that 1 = ax + by

Since c = c we have by theorem A, c1 = c(ax + by).

Applying A6 on the left and A5 on the right, we have:

c = cax + cby

By hypothesis a lbc which by A3 implies

a I c b. But a I cb implies a I cby. (Why?)

Similarly a I cax. Thus, we conclude that a I c.

(Why?)

Example 1: 7 1 70. Consider 70 as 514. Then we have

7 1 (5.14) and g.c.d. (7,5) = 1. Hence by the

above theorem 7 1 14.

Example 2: 10 1 840. Consider 840 as 21.40. Then we have

10 I (21.40) and g.c.d. (10,21) = 1. Hence

lo 1 4o.

Among the theorems that are easily established using the above

theorem are:
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(1) Let p.be a prime such that p I (bc) and p r b. Then p c.

(2) If p is a prime and p labs then either p I a or p f b

(or both).

11.14 Exercises

1. Using the Euclidean Algorithm find the greatest common di-

visor of each of the following pairs of numbers:

(a) 1122 and 105 (c) 220 and 315

(b) 2244 and 418 (d) 912 and 19,656

2. Find the g.c.d, (144, 104) using two different methods.

3. (a) What is the g.c.d. of a and b if a and b are distinct

primes?

(b) If a is a prime and b is a natural number such that

a I b what is the g.c.d. (a,b)?

4. Prove the following: Let 2. be a prime such that p I (bc)

and p ' b. Then p I c.

5. Prove: If p is a prime and p I ab then either p I a or

p I b (or both).

6. Prove: If a and b are relatively prime and a 1 c and b I c,

then ab I c.

7. Prove: If d = g.c.d. (a,b) and a = rd and b = sd, then

r and s are relatively prime.

8. Find 7 consecutive natural numbers each of which is com-

posite. Find 8. (It can be proved that there are a million

consecutive composite natural numbers; in fact, any number,

no matter how large.)
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9. Fermat's Little Theorem. In the year 1640 Fermat stated the

following: If p is a prime that is not a divisor of the

natural number a, then p I (aP-1 -1).

(a) Find two examples which illustrate this theorem.

(b) Note that there is the restriction that p ,1/ a. What

would follow if p I a?

(c) What can we conclude if p is not a prime?

(d) Can you prove Fermat's Little Theorem?

11.15 Summary

In this chapter we have explored topics in number theory.

You have had an opportunity to make conjectures and then to prove

your conjectures.

At this time you should be able to give a clear description

of what is meant by factor, multiple, prime number, composite num-

ber, even and odd natural numbers, greatest common divisor, least

common multiple, and complete factorization. Can you state the

Unique Factorization Property of the natural numbers? You saw

that the Sieve of Eratosthenes provides one way to determine primes

up to some number. Do you believe that this is an efficient tool

for finding primes? Can you describe several ways of finding the

g.c.d. of two natural numbers? What purpose did Euclid's Algorithm

serve and on what principle was it based? Can you state game

pro-lrties of prime numbers? Can you state some problems that no

one has yet been able to solve?

Overall, your awareness of the set of natural numbers should
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be increased. Also you should be more aware of what con-

stitutes a proof in mathematics and the fact that there are dif-

ferent methods of proving theorems.

11.16 Review Exercises

1. Explain why the following are true.

(a) 10 is a factor of 50.

(b) 30 is a multiple of 6.

(c) 6 is a factor of 30.

(d) 6 is a factor of 6.

(e) 7 is not a factor of 30.

(f) 7 is a prime number.

(g) 6 is a composite number.

(h) 91 is a composite number.

2. Define the following terms:

(a) factor (c) prime

(b) multiple (d) composite

3. Give a complete factorization of each of the following:

(a) 38

(b) 72

(c) 96

(d) 97

4. Using the data in 3 above, determine:

(a) g.c.d. (38, 72) (c) g.c.d. (72, 96)

(b) g.c.d. (38, 96) (d) g.c.d. (72, 97)

5. Using the data obtained in 3, determine:

(a) l.c.m. (38, 72) (c) l.c.m. (72, 96)

(b) 1.c.m. (38, 96) (d) l.c.m. (72, 97)
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6. Using the Sieve of Eratosthenes, determine all primes be-

tween 130 and 150.

(a) How many primes are in this set of numbers?

(b) How many twin primes are in this set?

(c) What is the largest prime p for which you have to de-

termine multiples to find all the primes in this set

of numbers?

7. Using the Euclidean algorithm check your answer for 4

(c) above.

8. Prove: if a 1 b and b I c, then a 1 c where a, b, c E N.

9. If 9 I n and 10 1 n does it follow that 90 1 n? Explain.

10. Prove if a b where a is a prime, then g.c.d. (a,b) = 1.

239



CHAPTER 12

THE RATIONAL NUMBERS

12.1 W, Z and Z7

In earlier chapters we studied a variety of number systems

--whole numbers, clock numbers, and integers. The operational

systems (W,+.), (Z7,+,) and (Z,+,) have several important

properties in common. In each system, + and are associative

and commutative, is destributive over +, "0" represents the

identity element for +, "1" represents the identity element for

, and for any elements a in each system a 0 = 0 a = 0.

However, the differences among these systems are as strik-

ing as the similarities. Z7 is finite; W and Z are infinite.

The assignments made by + and ibin Z7 are quite different from

those made by + and in W and Z.

(Z7,+,.) (W,+,*) and (Z,+,.)

4 + 3 = 0 4 + 3 7

6 + 6 = 5 6 + 6 = 12

5 6 = 2 5 6 = 30

In (W,+) subtraction is not an operation (What is 7 - 10?),

only 0 has en additive inverse (0 + 0 = 0), and many simple

equations of the type "a + x = b" have no solution (for example,

75 + x = 50). In both (Z7,+) and (Z+) subtraction is an operation,

each element has an additive inverse, and all equations of the

type "a + x = b" have solutions. The integers were developed

specifically to meet these deficiencies in (W,+). In

(Z,+) 7 - 10 = -3, a + (-a) = 0 for every a, and the solution
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set of 75 + x = 50 is (-25).

Extension of W to Z removed many of the restrictions on

addition and subtraction in W, but it did not accomplish the

same purpose with respect to mulitplication and division. In

both (W,) and (Z,.) division is not an operation, (What is

7 4. 10?), only 1 and -1 have multiplicative inverses (1 1 = 1

(-1)(-1)), and many simple equations of the form "a x = b"

have no solution (for example, 75 x = 50).

These limitations of mulitplication and division do not

hold in (Z7,.).

0 1 2 3 4 5 6,
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

In Z7 division is almost always possible. For example,

6 4- 2 = 3 since 3 2 =6; 5 = 2 = 6 since 6 2 = 5; 3 4. 5 2

since 2 5 = 3. Only division by zero is not possible. If

3 = 0 = m, then 3 = m 0 = 0. Clearly, 3 / 0; so there is no

number m in Z, for which 3 4. 0 = m.

In (Z7,) every element -- except 0, of course -- has a

multiplicative inverse. The multiplicative inverse of 2 (which

was written 7 in Chapter one) is 4, since 4 2 = 1 in (Z7,.).

Similarly =5 since 5 3 = 1 in (Z7,.); = 2 since 2 4 = 1

in (Z7,.); = 3 since 3 5 = 1 in (Z.7, *); and = 6 since

6 6 = 1 in (Z7,).
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In (Z7,) any equation of the form "a x = b" has a solu-

tion, if a / 0. For example, the solution set of 5 x = 1 is

(3) since 5 3 = 1 in (Z7,.). The solution set of "5 x = 2"

is (6) since 5 6 = 2 in (Z7,.). In Chapter one this last

solution set was also written (g) _g_ = 2 5 = 6 because

6 5 . 2 in (Z7,.).

The fact that (Z7,+,) apparently has all the good prop-

erties of (W,+,.) and (Z,+0.) and none of the deficiencies

makes it more desirable from a mathematical point of view. How-

ever Z7 has its own peculiar drawbacks. For example, such a

simple but important process as counting elements in a set is

severely limited if (0,1,2,3,4,5,6) is all that is available.

It is impossible to use Z7 for ordering sets into first, second,

third, fourth,... ; what comes after the sixth in Z7?

There is a broader class of practical problems for which

none of rby, W, Z is adequate.

Example 1: What is the probability that a. fair coin will

turn up "heads" when tossed?

Example 2: A board to be used for a 5 shelf bookcase is

14 feet long. How long should each shelf be?

Example 3: An architect's drawing of a building uses a

scale of 1 inch equals 4 feet. How long should

a line segment on the drawing be if the segment

represents an actual length of 15 feet?

These problems will never be solved using (Z7,+,.) as a mathe-

matical model. Certainly the elements of Z7 cannot be used to

measure lengths, for there are a large number of lengths in
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feet such as 8 feet, 25 feet, etc. that cannot be given by ele-

ments of Z7. Of course, as we have seen, (Z,+,.) and (W,+,)

aren't much help either. The three situations mentioned call

for solutions of the equations

(1) 2 x = 1

(2) 5 x =14

(3) 4 x =15

which do not have integer solutions.

What is needed is an extension of (z,+,.). In this extend-

ed number system (1), (2), (3), and all other equations of the

type "a x = b," with a / 0 should have solutions.

We shall now begin the construction of such an extension.

That is, we shall construct a number system (Q,+,.) such that

Z c Q and such that the following properties hold for (Q,+,.):

(1) Addition and multiplication are associative and

commutative.

(2) The distributive law holds for multiplication over

addition.

(3) 0 and 1 are the identity elements for addition and

multiplication, respectively.

(4) Every element has an inverse under addition.

(5) Subtraction is an operation.

Furthermore, we want (Q,+,) to have the following properties:

(6) Every equation "ax = b" where a E Q and b E Q end

a / 0 has a solution in Q.

(7) Every member of Q (except 0) has a multiplicative in-

verse.

(8) Division (except by 0) is always possible.
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12.2 Reciprocals of the Integers

The whole numbers were extended to the integers by uniting

(0,1,2,3,...) and a new set (-1,-2,-3,-4,) containing additive

inverses for each non-zero whole number. This suggests that if

r11111
the integers are combined with a new set Z' ti1,_1, 2,_2, 3,_3

1 where (read: "1 over a") is the multiplicative in-

verse of integer go where a 0, the problems of division, multi-

plicative inverse, and eauations "a x = b" would be solved.

How should addition and multiplication be defined in this

new set Z u Z1? Clearly, if a and b are integers the product

a b should be computed as it is in (Z,). Furthermore, if the

multiplication properties of 0 and 1 are to hold in Z U Z',

0 = 0 and 1 1-1fr 11 1 in Z'. Thus 1 1
-5 3'

1
.

and 0 = 0. Since --a- is the multiplicative inverse

1
of 8, -a- = 1 for all a (except 0) in Z. For example,

1
5 5 = 1 and -6

1
.---. 1.

1
Question: What is -81,

F
0? 1? a? Can you explain

your answer?

What element of Z U Z' should be assigned as the product

of 2 and 1? of .4 and of .4 and We know that 2 -32z, = 1

1
and 3 7 = 1. Therefore,

1 1 = (2 2)(3 4-).= 1.

Since multiplication in Z U Z' should be commutative and

associative,
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1 (2 ;)(3 )5-)

= (2 3)(i

1 I
Thus the product ,7 7 must be the multiplicative inverse of the

1 1
7-product 2 3 = 6. Therefore .7 g

1

The fact that

1 = (-2 ...i)(3 ;)

= (-2 3)(_i ;---)

= -6 (_i

implies that 4) _a 1 Similarly, = =

1 1 1
(_2)(_.s.) and, in general, --a- To- = g-7,E. But what element

of Z U Z' is assigned as the product of a and ;--/t? For example, what

is 5 in Z U Z'? What is 7 ( 1 1
3)? What is (-3)(_)?

1
The number assigned as the product of 5 and 7 must be a

solution of the equation "3 x = 5," since

3 (5 1) = 3 (3 5)

= (3 ;) 5

= 1 5

= 5.

But "3 x = 5" has no integer solution, and there is no

multf.plicative inverse of an integer which satisfies this equation.

Therefore it does not seem possible to make (Z U z',°) into an

operational system which retains the structure and properties of

(Z,+,). Our hope of obtaining an extension of Z that has the
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8 properties listed at the end of Section 12.1, simply by append-

ing a set of multiplicative inverses to Z was in vain. Another

extension must be made, from Z U Z' to a new set Q.

12.3 Exercises

Exercises 1 - 7 refer to (Z71).

1, If possible, give another name for:

(a) 1

(b)

(c)

2. Compute :

(a) 3

(b) 5 4--

(c) 4

(d) 4 6.-

(d)

(e)

(f)

(e)

(f)

(g)

(h)

*

6

6

2

2

1-
5

1
3

-51

3. In (Z7,) =a-f-b=cif and only ifa=c b. For

example, = 3 4. = 6 because 3 = 6 4.

Compute:

(a) i (e)

(b) (f)

(c) 2 (g)

(d) 5 (h)
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(a) 2x = 3 (e) 5x = 6

(b) 3x = 5 (f) 3x = 6

(c) 2x = 4 (g) 3x = 2

(d) 5x = 4 (h) 5x = 2

Solve:

(a) 2x = 1 (d) 5x = 1

(b) 3x = 1 (e) 6x = 1

(c) 4x =1 (f) Ox =1

6. Compare your answers to Exercises 2, 3 and 4 and explain

the pattern that you notice.

7. Compare your answers to Exercises 1 and 5 and explain the

pattern that you notice.

Exercises 8 - 12 refer ,to (z U Z',)

8. In (Z U Z',) the number x is a multiplicative inverse of

y if x y = 1. Find, if possible, a multiplicative inverse

of each of the following elements of Z U Z'.

(a) -7 (e) 0

(b) 13 (f) 1

(C) (g)14" -713

(a) 1
(h) -1

9. Compute:

(a) (104) (-1)

(b) (-8) (13)

(c) (52) (-2)

(d) (4) (-26)
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(e)

(f)

(g)

(-13)

t 1-7

(8)

(h) 4. . 4.-

(i)

(j) 4

(k)
1

_10

(1) 3 (4 -2)

(m) (-4 t) 7.4

(n) 4)

(0) (.4 4-)

10. in (Z,) 12 = 4 3 = 3 4 = 6 2 = 2 6 = 12 1 = 1

1 12 = (-4)(-3) =

Write each of the following integers in three ways as

products of integers.

(a) 9

(b) 75

(c) -15

1 1 1 1 1 1 . 1 1
11. Write each of the7 .77 -2 2 3 -2 -3

following elements of Z U Z' in three ways as products.
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12. Although 1 and -1 have multiplicative inverses 1 and -1

respectively in Z, it is convenient to consider them as

elements of Z', the set of inverses of integers. Thus

1 11
1 = and -1

Compute:

(a) t-

(c) 1
1

(d) I

(e)

(f) -1 -12

(g/

(h)

1 1

-1

117

-17

1

7 -1
--

13. For each of the following equations, give the solution in

the set Z of integers.

(a) x + 4 = 6 (g) 15 + x = 25

(b) x + 4 = (h) 15 + x = -25

(c) 312 + x = 298 (i) -330 + x = 45

(d) 500 + x = -6 (j) -330 + x = -45

(e) 6 + x = o (k) -20 + x = -100

(f) x + 2000 = 0 (1) x + 1,215,687 = 1,200,347

14. For each of the

integers which

following equations, list the set of

are solutions. If this set is empty, say so.

-21 (g) 0 x = -2(a) -3 x. =

(b) -3 x = 21 (h) 88x = 8800

(c) -3 x = 20 (i) 88x = -8800

(d) x 5 . 45 (j) 467x = 1401

(e) x 5 = 102 (k) -12x = 144
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(f) 4 x = 0 (1) 1367 . -7x

Give an integer for each of the quotients below.

there is no integer, say so.

(a) -21 -3 (g) -42- 14

(b) 21 = -3 (h) -2313 = -9

(c) 20 4. -3 (i) -1000 + 2000

(d) -50 5 (j) 2103 (-3)

(e) 0 -4 (k) 27,521 + -13

(f) 1 +84

1

If

6. In (z,+,), how many solutions are there for the equation

"0 x = On?

17. If division is defined in (Z',) by T5 = c: if = 11,

1
can you find

2

1 in Z'?' Can you find any quotients in Z'?

12.4 Extending Z U Z' to Q

Extension of Z to Z U Z' removed one limitation of Z; each

number in Z U Z' (except 0) has a multiplicative inverse. How-

ever equations such as "5x = 3" have no solutions in Z U Z', and

multiplication is not even an operation in Z U Z' (what is 3
1

in Z U Z'?). Can Z U Z' be extended to a number system without

these restrictions?

The system Q which meets the above requirements must con-

tain Z = (0,1,-1,2,-2,3,-3,...) and Z' = _1, _12, 1,

We have already shown how to assign products to (a,b) for a and

b in Z, and to (14), for 1- and in Z'. Q must also contain

numbers which can be assigned as products for pairs (b,l) of
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elements in Z U Z'. Recall from Chapter 2 that for to be an

operation on Q it must assign exactly one element of Q to each

pair of elements of Q.

Question: How shall we assign exactly one element of Q

to each pair (b4) of elements of Q?

If we agree to indicate the product b by I" (read: "b

over a"), then Q must contain 2 1 -2- -7 1 =
3' ' 5' -11-

-6
.11? and so on. The equation 5x = -3 has a solution 1 in

Q because

5
5 5

5 (-3 1)

= -3 (5 .

= -3.

1
Question: Why don't we worry about pairs (.5.,,o)i

Question: What is the solution set in Q of "4x = 3"?

3.The natural answer to this question is (4J since

= 4 (3

3 (4

= 3.

6
But what about 8-, the product of 6 and ik

/1)

;-*

4(g) .

=

=

=

4

(4

(3

3

3.

(6

6)

8)

(8
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9 1What about IT the product of 9 and ?17

4 = 4 (9 14)

= (4 9)(14)

(3 12)(14

= 3.

12 15 18 21 3n
In a similar way you can check that TE, 75, 8, ..., 7171? ...

are all solutions of the same equation. Do these represent

different elements of Q? If so, the equation 4x = 3 has an

infinite number of solutions--not a desirable state of affairs.

(Why not?) If a and b are two different solutions of 4x = 3

then 4a = 3 and 4 b = 3, and so 4a = 4b and a / b. Thus the

cancellation property, so useful in Z, would not carry over to Q.

Actually the situation is much simpler than it appears.

"3" "6" " 9" "12" "qn", 8,, tiT ... all represent the same element

of Q. In other words, the pairs (64), (9,4), (12,4), ...

are all assigned the same product in Q. This is easy to show.

For instance,

6 = (3 2) (i W.)

= [3 (2 i)1

[3 2.]

. 3 1
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6 3 "6" 11,11

Therefore = g or )3 and -4 name the same number in Q.

Similarly 14 since

9 a 1
12 12

= (3 3) 4 k)

=3 (3 4) k

3 k

_V3V
The fact that single element of Q has an infinite number

4
of names should not be shocking: 4-, 4 ; are all

products of elements in Z U Z'. In (Z,) many pairs of integers

are assigned the same integer as a product. For example, 12 =

4 3, 12 = 6 2, 12 = (-6)(-2), and so on. In (Z,+) each

integer can be obtained as a sum in an infinite number of ways.

For example: 12 = 10 + 2, 12 = 11 + 1, 12 = 12 + 0, 12 = 13 + (-1),

12 = 14 + (-2), and so on.

Looking again at the equation "4x = 3," try Zias a solution.

4 (4) . 4 (-3

(4 -3)

(3 _4) .

= 3 (-4

=3
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-6 -9 -12
Next try --Er, . Following the procedure illustrated

you will find that these products also satisfy the equation.

The reason is quite simple.

4

= (3 (-1)) :1)

1. 3

The pairs (3,) and (-3,74-1), (-6,4), (-9,4),... are all

assigned the same product in Q.

1
The investigation of 3 /-r. and 4x = 3 can be repeated with

1any other product a -13 and the corresponding equation bx = a.

For instance, the pairs

(2,4), (4,), ( -4,

are all assigned the same product in Q. In other words,

2 -2 4 -4 2n- 7 - - - -

Reasoning as above, you should be able to convince yourself that

and

9_ -9 18 -18 gn
10 -10 20 -20 "' 10n '"

The element of Q assigned as the product of the pair (a4) is

also assigned as the product of (na,4), where n is any integer

(except 0). In other words, this element of Q can be named in an

infinite number of ways!
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"a" "-a" '2a'' "-2a" 11na
15 ' 71:7 ' ' =213 ,

The elements of Q -- including integers, inverse of integers,

and products -- are called rational numbers. The names of these
I I

F'
rational numbers F are called fractions, each rational number

having many fraction naines. In the fraction "a" "a" is called

the numerator and "b" the denominator.

When two fractions name the same rational number they are

called equivalent fractions. For example and

2 2 3lent fractions, as are - and , as are =4. and

-1
? are equiva-

-3T . It is

easy to verify the following test for equivalence of fractions.

a
Let b = 0, d = O. Then the fractions

b
and E are ci_uiva-

laxit if, and only if, ad = bc.

Question: Is equivalence of fractions an equivalence

relation?

Because "3" "-3" "6" and "12" all name the same rational

number, when we say "the rational number 311 or "the rational

6 11 --3 ,,

number 15 or"bhe rational number 4 we refer to the same ele-

ment of Q.
uqu

One of these fractional names, ff , is the simplest and

nqu
most commonly used. if represents the product of the pair

(3,10; the integers 3 and 4 have no common factor other than I.

"6"
On the other hand, u represents the product of the pair

(6.91) But the integers 6 and 8 have a common factor, 2:
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6 2 3
T-74.

=

= (2 2)(3 1)

= 1 ()

_

In a similar manner "T.612" can be simplified because 12 and i6

have a common factor, 4. is called an irreducible fraction.

(Note: It is the fraction "i which is irreducible, not the

rational number ,31)

Example 1: B.7
14 241

"I73.11 is the irreducible

fraction.

2"
Example 2: = -

"7
but is the irreducible

fraction (not ) .

5 -10
Example 3: .7 7-6 but is the irreducible

fraction (preferred for reasons of convenience

over

2
Example 4: 2 = = = 76. = but we agree to take y

as the irreducible fraction, Similarly, we

.2 -1will agree that 7, are irreducible

fractions, not -2, 1 or -1.
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The set of rational numbers, Q, promises to be the extension

of Z required to solve equations "a x = b" and make division

an operation. These questions are examined in Section 12.6.

12.5 Exercises:

1. Wrtte four other fraction names for each of the following

rational numbers:

(e)

2. Find a solution in (Q,.) for each of the following open

sentences. Write each answer as an irreducible fraction.

(a) 5 x . 4

(b) -7 x = 1

(c) 16 x -8

(d) 6 x = -1

(e) 5 x = 2

(f) 10 x = 4

(g) -15 x = -6

(h) 25 x = 10

3. For each of the following rational numbers, write an

equation for which it is a solution.

257



4.

- 252 -

(c)

4. Determine which of the following statements are true.

Then use procedures similar to those of Section 12.4 to

check your answer.

(a)

(b)

(c)

(d)

(e)

2

-?3

=

.

=

6

2 -4

4 19

(Hint: -1
-1

-1)

5. Rational numbers, as well as whole numbers and integers,

1
can be represented on a number line. For instance, 7 is

located as indicated.

0 1
',
i..e........, '.------y ' .......1

1
,

2
because 3

3
= 1. Similarly, is located as indicated

2
0 1 2

2 2 2

7 3 3

because 3 4. = 2
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(a) Draw similar number lines to illustrate the locations

of:

(1) (4)

(2) k. (5)

(3) g (6) -;

(b) Draw three parallel number lines and scale them by

tracing the scales on the following lines.

0 1 2 a

0

0 1

2 4Locate 7,75, and ; on lines a, b, and c respectively and

show why each is a solution of "3 x = 2."

12.6 (Qt.)

Is the new system (Q,) an operational system? If 2 and

q are any elements of Q, is there a unique element r of Q

assigned as the product of p and a? Remember Q consists of the

integers, the multiplicative inverses of all integers except 0,

and the products a iL5, where a and b are integers and b 1 0.

If p and q are both integers, for example 17 and -12, the

product (17)(-12) = -204 is an integer and in Q. If p and q are

inverses of integers, for example 4 and the product
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1% 1 1(-7)(7) = 7ffy is the inverse of an integer and in Q. If 2 is

an integer and q the inverse of an integer, for example -9 and

r, the product is (-9) (b) = 4.3 again an element of Q.

7 2
But what if p = --g and q = -5? How is a product assigned to

(p,q)? Is p q an element of Q?

(4) (;) [7 (4)] [2 4]

= (7 2)(4 4)

= (14)(4)

14
-24

14
7.A. is an element of Q. In general:

t-/ = (a i)(c ?-11) (1)

= (a = c)(b 1) (2)

(a (3)= c)(1) d)

a c
b d (4)

It is important to recognize several assumptions that allow

deduction of the computational rule ' -ceT = F-fr . (1) is true

1by definition -- = a
1- and 3 = c 3 . The derivation of

(2) from (1) is made possible by the assumption that is both

commutative and associative.
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(a i--)(c i) = [a c)] Id- Assoc.

= [a (c 11:)] Comm.

= (a c)4 Assoc.

(3) follows logically from (2) since 7c'i 1 (See Section

12.2). (4) follows from (3) because x 2i= for any integers
Y Y

x and y. Thus the rules for computing products in Q are a direct

consequence of our definitions, multiplication in Z, and of

the properties of (Z,.) that we want to hold in (Q,) as well.

Study the following examples of computations in (Q,).

(1) ;

(2)
8

4f.4 -3 18 -3

Question: What are the irreducible fraction names

7 -4o 54form, :TV

The next important question: Does each equation of the form

"a x = b" have a solution in Q (a,b E Z,a / 0)? Study the

following examples.

Equation Solution Set

3 x = 2 (;)

-7 x = 5 (41

31
-11 x = -13

(-
r-111'
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These examples, and your previous experience with equations,

should convince you that any equation "a x = b" (where a 0)

has a solution,
a, in Q. Furthermore, every rational number is

the solution of some such equation. Therefore, a rational number

can be described as the solution of equation "a x = b," where

a and b are integers and a pl 0.

The following exercises give practice computing in (Q,),

and suggest important properties of this operational system.

The question of whether division is an operation in (Q,) is

taken up in Section 12.10.

12.7 Exercises

1. Compute in (Q,). Give your answer as an irreducible

fraction.

(a)

(b) 79-

(c) -f
5 27

(d)
-5 _1i

(e) g 4
(f)

(g) g-

(h)

3 2 9 2 9
2. We know that 73 -779 . Is the product - .17 7 .

u.211 11 ou
It should be, since * and are only different names

"for the same rational number.

3 2 9 2
(a) Compute 7 7 and T-2- 7 and express your answers as

irreducible fractions.
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(b) Do your answers in (a) agree?

(c) Compute and express as irreducible fractions.

(1) 5- 1 and 1
"1:6 3

(2) 1- and 4 s_

(3) g and 1

(4) and 3

d .17 B.

(5) 1- and ;

(d) Do your results in (c) confirm or deny the statement:

a c a' cl a a' c c'
if = -a- and 1-51 = Top then 1-5-7-7-

' d d'

3. Find the following products of rational numbers.

(f) 2.5 (k) '51)

(g) (1) - ;)

(h) 9 4- (m) si

(d) /4 11 2 4
.g(i) 7 (n) (.4 14)

10 3
(e)

I 0) 3.- (0) (;1-) Li,

4. Find each of the following products.

(a) 5 2 (e) 7 8 (i)

(b) ,2r (f) i (J)

(c) 3 6 (g) 15 5 (k)

(d) 3 (h) (1)
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5. Determine the following products of rational numbers.

(a) 1 ! 10
(d) -7 E

(b) 14 (e) gig g_

(c) i (f)

6. Determine the following products. Use an irreducible

fraction to represent each product.

(e) 1291. 7
100

(f)
1

1

1

1

(g) 75

14 99
(h) -97 Iv

7. Below are a number of equations, each of which has a solution

which is a rational number. For each equation, write the

irreducible fraction which represents the solution. Then

write four other fractions for the number.

(a) 7 x = 5 (e) 5 x = 2

(b) 15 x = 10 (f) 10 x = 4

(c) 4 x = 1 (g) -3 x = 2

(d) 10 x = 1 (h) 3 x = -2

(i) b x = a (b , 0)

8 0
8. Is it true that

11
1

143
4

? 9
Tf you are patient you will

discover that 104 and 143 have 13 as a common factor. Thus

11
It often easier to check such state-

ments using the following rule:

104 8 13
143 11 13
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a c= z if and only if ad = bc.

(a) Check this rule with the known statements:

(1) 2 =

(2) r3 6

$__144

(b) Using this rule determine which of the following

statements are true.

(1) 20 1T(c))

(2) -15 =

19

(4) g.&
45 32

(5) =

12.8 Properties of (Q,')

(6) = 4(4

(8) g =

2 1
(9) =

(10)
7
7
- =

As with all operational systems, it is worthwhile to

investigate the properties of (Q,'). As was illustrated in

Exercise 3 of Section 12.7, multiplication of rational numbers

is both commutative and associative.

Commutative Property of (Q,)

If PI and are rational numbers, then

a c c a
b c
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Associative Property of (Qo.)

a c

d
If

b
--, , and are rational numbers, then

(17t
.9..)

fc e

d f lir 1,-)

If you refer to Exercise 5 of Section 12.7, you should see

that there is an identity element in (Q,). This identity ele-

ment is the rational number 1, also named by the following

ti, i1 11_1 11 112 U u_2 t1 113 n

fractions: .1-, 7r,
-' 7,

3 6
Example 1:

2
. - E

_

3 f 15Example 2:
20

Examples 1 and 2 are really the same rational number products.

In both cases, the rational number iwas multiplied by the same

rational number; the only difference is that in the first example

the fraction
2

was used to represent the number, while in the
11,1

second example the fraction was used. In both cases the
tttt

product was since the fractions and represent the

identity element, 1, of (Q,*).

Identity Element of (Q0)

1 a
ITIf is a rational number, then

a
y = , that is,

a a171=175..

2
What is the product of 3- and ? It is easy to check that

the product is +. or 1, the identity element of (Q,.); therefore,
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these rational numbers are inverses of each other in this system.

If you refer to Exercise 6 of Section 12.7 you should notice a

pattern -- the inverse of t/' is /2a- . There is one important

exception to this rule however. The product of 93.- and another

rational number cannot be 1.

Note that names the same rational number as 0 as does

0 for any non-zero integer n.

FQuestion: If F is any rational number, what is the product

a 0TT F? Do you see then why has no inverse in

(as.)?

We now state the following property:

Inverse Property of (Q,)

/

If t3"-. is a rational number which is not T. (thet is, a 0),

F,
a b

then
b is the inverse of F, that is F . F = 1.
a

Thus, tin rational numbers
a
and

a
are inverses in (Q,.).

Because the operation in this system is multiplication, we may

call them multiplicative inverses. It is also common in the

system (Q,) to call a multiplicative inverse a reciprocal.

Example 3: The multiplicative inverse of the number

is or the reciprocal of - is Each

1
of 5,

5
is the reciprocal of the other.
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12.9 Exercises

1. For each of the following equations, find a solution in

(44').

(s) a = (e) 14 m =

(b) 14. a = 1 (f) 3.4 a =1

10 9(c) x (g) 1 x= 3-4

(d) x = (h) x x = 1

2. Determine each of the following products:

(a)

(b)

.9-
5 72

0

3. The rational number 0 is represented by any one of the

fractions in the set

n
0 " " 0 " "0 " "0 " "0 "(, 7, .)

On the basis of the products in Problem 2, how would you

describe the behavior of this number in multiplication?

4. (a) List 10 fractions which name the identity element in

(Q,').

(b) List 10 fractions which name the inverse of g- in (Q,).

(c) What is the product of and

(d) What rational number is its own inverse in the

system (Q,)?
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(e) What rational number has no inverse in the system

(Qp.)?

5. (a) Write the properties which a system (S,*) must nave

in order to be a group. (See Chapter 2, Section 2.15.)

(b) Is (z,.) a group? If so, is it commutative?

(c) Is (Q*) a group? If so, it it commutative?

(d) L t X be the set of all rational numbers except O.

Is (X,) a group? If so, is it commutative?

6. (a) Compute the following products in (Z.,):

-8 1, 14 1, -234 1, 55 1, 86 0, -14 0.

(b) Compute the following products in (Q,.):

. 1 14 . 1 -234 . 1 55 . 1 86 . o -14 . o
"7 I 1' 1 I' -I T' 1' 1 I

7. Often a short cut can be used in finding the product of

two rational numbers. Perhaps you have used this short

cut before, but have never been able to explain why it

works.

Study the following example:

-3 56 (?. 3) r2 T:34 3) 34
This is not a short cuts But notice that since

2
is the

identity element for multiplication, we could have deter-

mined the product this way:

3=

Do you see how the identity element for multiplication

has been used in the following example?
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23( 03_ 6
5T6 715- T5

Use this short cut in finding the following products:

(a) °

(b) 'i-

(e) 1

(d) ;

(e) g

12.10 Division of Rational Numbers

(f) (244F.' )

(g) (i )

(h) 4)
(i) * /51 ;*

) fost" c f,i

In (z,), the equation

12 4 3 -x

has the solution 4, because 4 3 = 12. That is, division is

defined in terms of multiplication. We define division in this

way also in (Q,).

Definition: If a and b are rational numbers then

b 4- a= x if and only if x a= b.
23

Suppose we want to find 4. 4- . We must then find a

rational number such that

2 x
4 + 5`y

Is there a solution? If there is, we want the following to be

true:

x 2 3

7 5 ir
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2
Now the reciprocal of 5 is and we know that

Therefore,

5 2 1
25- 1.

3 5 2, 3

4
/

5, °

Using the associative property of multiplication, we can write

Do you see that we have found the number - which we were trying

3 5fto find? It is the product 4 . , which 13 the rational number

15

3 3So, 4 . the solution 4of +

3 2 3 5
4 4. 5 4

. In other words,

From this example, it would seem that the quotient of two

rational numbers can be found by finding the product of two

rational numbers.

See if you can follow the steps in the following example:

Now,

So,

4
3+=s7

x

23=1
4
3

3 x

3 4
3

3 1

(2

'5

3)

2'

e's ;) i
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4So we have found the rational number whose product with 3p is 7
d

Yand that is the number -
Y
which we were seeking. Therefore,

4 3 4 2 , 8
5 5

(which of course is x).

3 ,Thus, to divide by 2, you multiply la the reciprocal. of .

And if you look at the first example again, you see the same

pattern there: to divide by ;, you multiply by the reciprocal

of
2

BFinally, let B and a be two rational numbers (c / 0).

a c x
1r = then )1 . a

y a E

But we know (g. . g) . (Why? Can you supply the missing

step?)x a
EdSo . E. That is,

a c a d
a E 6

Can you complete the following sentence?

Dividing by the rational number - is equivalent to multi-

plying

You will recall that in Section 12.6, a rational number

was described as the solution of an equation ax = b where a E Z,

b E Z and a / O. Now let us consider an equation of this type

where a and b are in Q, and a O. One might be tempted to

think that in this case some kind of new number might be called

for as a solution. But this is not the case. Consider the

equation
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2 5
. x - 6

If you examine the definition of division carefully you will

see that the rational number x must be the quotient of ; and

Hence,

5 2
x = 6 3

2
. That is,

, 5 3 15 5
6 2 17 4

2 5 0 =Checking this result, . 4 - _ .

Thus the rational number Pi is a solution to this equation. It

is a consequence of the properties of (Q, +, ) and the defini-

tion of division in (Q, ) that every equation . x = with

E Q, E Q and a / 0 has the solution . /I in Q.

These results now make it possible for us to interpret

any rational number a not only as a solution of an equation

ax = b where a E Z, b E Z and a 0, but also as the quotient

of two integers. That is, as b + a.

In fact, the use of the capital letter "Q" to denote the

rational numbers comes from the fact that a rational number is

a quotient of integers.

5Consider the rational number 6. This is the solution of

the equation "6x = 5." But by what we have said above, since

6 and 5 are also in Q, 5 + 6 is also a solution for this equation.

That is, = 5 6.

Several consequences of this relationship are illustrated
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in the following examples.

Example 1. = 0 + 1 == 0, since 0 1 = 0.

In general, if b E Z and b 0, = 0 b = 0,

since 0 b = 0.

Example 2. 4 -6 1 = -6, since (-6) 1 = -6.

In general, if a E Z, = a + 1 = a, since

a 1 a.

Example 3. 4; = -13 + -13 = 1 since 1 (-13) = -13.

In general, if a E Z and a / 0, 1 = a a = 1,

since 1 a = a.

12.11 Exercises

1. Find the following quotients of rational numbers. Then

use a product to show that your result is correct.

(a) ; ; (d)

(b) (e) g I;

(c) ; 1+
g

2. Find the following quotients of rational numbers.

(a) +

(b) g

\
9
8

9
8(c)

(d) 3 5
0 2

(e) 11-1

(f) ;- 27
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3. Find the following quotients:

(a) 6 = 2 (e) 5 4. 5

(b) =
(g) 1 +

(c )
128

+ (h) 4 4. 8

(d) 20 5 (i) #4-

(e)
1 1

4. Determine a rational number solution of each of the following

equations.

2 x 3
(a) 3- 7

(b)

Y

. 2 5(c) 7 = 7

(d) 7 3 =;`,

(e)
y =5

5. (a) Is it possible to find the quotient ; ? Explain

why or why not.

(b) What rational number has no reciprocal?

(c) In the sentence
b d-b c'

what number must a not be? Why?

(d) Is division en operation on the rational numbers?

Why or why not?

(e) If the number 0 is removed from the set Q of rational

numbers, is division an operation on the set of numbers
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that remain?

(f) Is division associative? (See Exercise 2.)

12.12 Addition of Rational Numbers

Since the rational numbers are an extension of the integers,

we already know how to compute many sums in Q. For example,

-5 + 7 = 2 or 1: . Of course, it should not make any

difference which of the many available fractions are used to

represent the rational numbers 11.- and . This suggests the
1

following:

-15 , 21 6 -10 14 4

This in turn suggests that we uefine addition of rational numbers

in the following way:

a c_a+ c
F b b

That is, in determining a sum we select fractions which have the

same denominator.

Example 1: What is the sum of the rational numbers

land .

2 97

5 2 5 + 2 7
7 7

This definition of addition in Q was suggested by the desire

to extend addition of integers. There is another reason for

adopting the above definition.

3
+ 5 = 3 1 4 1
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If the distributive property of multiplication oveIc addition

0

is to hold in (Q,+,.):

3 5 + 4 = (3 + 4 )
5.

5

_7
5

2 3
Example 2: What is the sum of the rational numbers 7- and 4?

We may indicate the sum this way:

2 3

7 4

However, in order to use the method above, we

must find other fractions for these numbers,

fractions with the same denominator. how, the

least common multiple of 3 and 4 is 12, So we

say that 12 is the least common denominator of

the denominators 3 and 4. We then represent

each of the rational numbers by a fraction with

denominator 12.

2 3 8+ 9_ 17
4 12

Although we do not prove it here, it is true that there is

one and only one rational number which is the sum of two given

rational numbers. For instance, in Example 2, we could have used

16 18
the fractions -ff4 and -ff4 . (Why?) Then the sum would have been

11 314 If

the number represented by the fraction. But this is the

same as the number 1; . (Why?)
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In order to get a general definition from the method we

have been using, let and a be two rational numbers. Then to

a c
find the sum F a, we need to select two fractons that have

the same denominator. do you see that

Thus, we have:

a ad and c be 9

b bd `""' bd:'

a ad be
b "a bd

ad + bc
bd

We now have an operational system (Q, +). In this system

there are the following properties:

Commutative Propertz_of Addition

a c c . a
If a and c3 are rational numbers, E+ . 1.

Associative Property of Addition

a caIf F, , and y are rational numbers,

Although we do not prove these properties here, there are

examples of each of them in the exercises.

Now consider the rational number 0, also named by

"0 " "0 " "0 " "0
I.

1 7, -51 ,

Wnat are the following sums:

2 0 0 -2 +7, +4-.0 3 0

7' -6 E '
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For any rational number 11, 1134+ 1?7, = . You recognize

here the familiar pattern for an identity element; and since

0the fraction Tc7 represents the rational number 0 we have the

following property:

Identity Element for Addition

a
For any rational number + C = IT.

In investigating operational systems in the past, the notion

of inverse has been tied closely to that of identity element.

Two elements are inverses of each other if together they produce

the identity element. In this connection, study the following

examples:

3 -3 _ 3 + (-3) 0 -5 5 -5 + 5 0
V -V 4 V-6bar

These and similar examples should make the following property

clear:

Inverse Elements for Addition

If t is a rational number, then t + Mt = 3.

(-a is the additive inverse of a in the set Z of integers.)

a -a
That is, every rational number b- has an inverse, .

Example 3: What is the inverse of 5 in (Q,+)?

-6 6 -6 0
The inverse is 75, + I

Example 4. What is the inverse of 4 ?

In Z, the additive inverse of -3 is 3; that

is, - (-3) = 3. So the additive inverse of

4 Q is ?r, '3. 279
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So far we have considered only properties of addition and

multiplication separately. In (Z,+,.) the distributive property

of multiplication over addition holds. That is for .g, I. and c

in Z, a (b + c) = (a b) + (a c). Study the following

examples:

;10 ;.

/2 1N /2 IN 2 , 2 14 10 24
vT 51 'T 7" 15 1755 157

(ig g) (4 4 4
(11 3) (-3 -2_) -9 6 : 4 -1

5 10 5 15) 50 75 5o
2

5o 50

It appears that the distributive property holds in (Q,+,) also.

Distributive Pro erty for Multiplication over Addition

a caIf B., , and y are rational numbers, then

b TY 'EU Fr
We will agree that 2 3 + 2 5 . 6 + 10 and that

3 4 + 7 = 12 + 7. That is, we take 2 3 + 2 5 to mean

(2 3) + (2 5) and 3 4 + 7 to mean (3 4) + 7. With this

agreement the distributive property can be written as

(i )= II

This convention is followed in any operational system where

multiplication and addition are defined. Thus, for integers a,

b, andcwe writea(b + c) =ab+a c.
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12.13

1. Find

(a)

Exercises

of rational numbers.

20

the following sums

i +

(b) +
(g)

20 -5

172

-7 13
(c) + (h) 172. + -376

(d) + (i)

7(,-1 14 5
I 7

(Hint: g represents the

same rational number as T.

( .3) + 31.1y z

2. What rational number is assigned to each of the following

ordered pairs by the operation of addition?

3. What property of (Q,+) do the sums in Exercise 2 illustrate?

4. Compute the following:

(a) (5+ +

(b) + +

(c) (-4 1. ;) 1. a

(d) + (; +

5. What property of (Q,+) do the sums in Exercise 4 illustrate?
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6. List ten different fractions which represent the identity

element in (Q,+).

7. Compute the following:

(a)

(b)

(C )

1.4. (h)
.81 0
7 51

8

+

+

(e)

(f)

(g'

+

-16

w -Fr

148 .1487
148

--7
+1-

87
8. Compute the following

(a) 7 + 3

(b) +

4+

sums:

(d) 0 + 7

(e) i +

(f) -15 + 7

(g)

(h)

(i)

-11 -r
-8 + (-4)

+-4(C)
8 ,

1 1

9. (a) Is (Z,+) a group? If so, is it commutative?

(b) Is (Q,+) a group? If so, is it commutative?

(See Section 12.9, Exercise 5.)

10. Give the additive inverse of each of the following rational

numbers.

11. If we use - it to denote the additive inverse of the rational

number
a complete each of the following so as to have a

true statement.
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(a) -g- (d)

(b) - -4 = (e) -5=

(c) _ (f) (- g) =

12. Compute the following:

(a) I- (;. 76)

(b) .3t) ;)

(c) ; (i g)

(d) (- .153) + i)

(e) -5)

(f) (i i) (I- i)

(g)

(h) (g. 1) (g- ;-)

12.14 Subtraction of Rational Numbers

In (z,+), we say

5 3 = 2, because 2 + 3 . 5.

And, in general,

if c + b = a, thean a - b = c.

In other words, subtraction is defined in terms of addition.

We shall make the same sort of definition in (Q,+).

Definition: If a, 12, and c are rational numbers, then

a - b.= c if c + b = a.
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2 1

5

3
For example, since

5
- + = we agree that

5

3 1 2

3 3 3
2 3 1And 3 is the difference between 3 and or the result of

1 33subtracting 3 from . We could have found this difference in

the following way:

2 -1 1

3 3 3

That is, instead of subtracting 5, we might add the additive

1
inverse of 3. This is, of course, the same pattern we noticed

earlier for the integers. We consider below the general case

for the rational numbers.

a c ,x
Let 1-5 - E = F.

Then by definition of subtraction,

x + c a-
y a F

tx c -c a -c
`y 3' '

y \a. b+ -3
x 0 a , -c- + = -ylbd

x__ a -c
y d

But in our original equation,

x a c
d'
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a c a -c
b d b d

As a practical matter then we can always find a sum instead of

a difference, provided we remember to add the inverse of the

number being subtracted.

-3 -2 -3 2
Example: - 5

_ -9 4. 10
15 15

12.15 Exercises

1. Compute the following differences.

2. (a) What is the difference 2 -
5
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(b) What is the sum 2 + =1 9sum
5

(c) What number does
5
=4 name?

(d) What is the sum + (- 1)9
5 5

3. Compute the following:

4, Is subtraction a binary operation on the set Q of

rational numbers?

5. (a) Is subtraction of rational numbers associative?

(b) Is subtraction of rational numbers commutative?

(c) Is there an identity element in (Q,-)?

6. Is (Q,-) a group? Why or why not? (See Section 12.9

Exercise 5).

12.16 Ordering the Rational Numbers

In the set Z of integers we know that 2 < 3. Since

2 and 3 are also elements of Q, this suggests that the order

relation "<" be defined in Q so that it is still true that 2 < 3.

Also, -7 < -4 and -1 < 5. We could write these in Q as

"f
2 3 -7 -4T -17< T , < and <

5
,
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4 6 -21 -12 -4 20< , and 4 <

These examples further suggest that we agree to the following:

a cIn Q, < E if and only if b > 0 and a < c in Z.

Example, 1: 4 < .1 in Q, since 4 > 0 and 3 < 7 in Z.

Notice that if we represent the rational

numbers 4 and 4 on a number line, the point

3whose coordinate is 4 is to the left of the

point whose coordinate is .

3 7
1 0 l 4 2

Example 2: =4 < =4 since 4 > 0 and -7 < -3 in Z.

Again, if we represent the rational numbers

=4 and =4 on a number line, the point whose

coordinate is =4 is to the left of the point

whose coordinate is .

_7 3
-.. /11-rf" 0 1 2 3

Example 3: Compare the rational numbers 11 and . Which

is less? Our method for comparing rational

numbers is based on fractions that have the

same denominator. Therefore, we shall use
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the fractions

11 9
--
..,,,,, 7 13

13---g - 9 13

to compare the given rational numbers.

(Do you see why these fractions were chosen?)

Now, since 13 9 > 0 and 7 13 < 11 9 in Z.

we have

g7

11< T3 in Q.

From Example 3, we notice that if < PI since 7 13 < 9 11.

And this suggests a general way of comparing two rational numbers

without actually writing fractions with the same denominator.

Suppose t and are two rational numbers, and b and d are both

'lad" "bc"
positive integers. Then the fractions bd

and
bd

also repre-

sent these numbers. (Why?) And by our earlier agreement,

ad bc
bd ` bd if and only if ad < bc.

Therefore, we make the following definition for ordering

rational numbers:

Definition: If
a

and are rational numbers, and b and d

are positive integers,
a c

< if and only if

ad < bc.

2 4
Example 4: Compare the rational numbers 7 and -5 .

Since 3 > 0 and 5 > 0 and 2 5 < 3 4, we

2 43conclude 3 < .

In the definition above and in all of our examples, we have de-

manded that the denominators of the fractions used in comparing
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rational numbers be positive. Is this necessary?

2Consider the rational numbers I and 1. . We have already

agreed that 1 < 1 , since 1 > 0 and 2 < 3. And yet if we were

to use the fractions
-2

and :7*-J1. to represent these numbers: it

is not true that -2 < -3. This illustrates the importance of
n

=
n

c
11 H

using fractions . and with b and d positive when comparing

rational numbers.

Questions: Can every rational number be represented by a

flan Ha fl

fraction u with b > 0? What fraction T3-

where b > 0 represents the same rational number

3, -7 9as . as .

12.17 Exercises

1. Represent the rational numbers in each pair below by the

fractions having the same denominator. Then decide which

rational number is smaller.

(a) t and a

(b) and

(c) and

9
(d)

8
-s- and 4

2. Draw a number line, and locate points on it to represent

each of the rational numbers in Exercise 1.

3. Decide which of the following statements are true, and

which are false. (As with the integers, the sign ">"

means "is greater than.")

(a)
5 <2. (d) <4 (g)

=2 <-4
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(b) > (e) T°.

(c) i5 < <

(h) g>

i) L1.5. .
' 32 12

4. For each pair of rational numbers below, decide which

is less.

(a) z ,;

(b) --g-5

( 11 7

(g) loo 13(

(h) 3-29.

(i) -3'
a 0

Ts
a

5. If Ts > T., then is a positive rational number.

a 0
-37, then I-)

a
If Ts < is a negative rational number.

Decide whether each of the following rational numbers is

positive, negative, or zero.

6. If Ta:'): is a rational number, and the product of the integers

a and b is a positive integer, is the rational number t

positive? Give an argument for your answer.

7. Answer each of the following, and give an argument for

your answer.

(a) Does the ordering of the rational numbers possess

the reflexive, property? 290
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(b) Does the ordering of the rational

the symmetric property?

(c) Does the ordering of the rational

the transitive property?

8. Complete the following sentences for b

integers, and a aad c integers.

numbers possess

numbers possess

and d positive

(a) If g < T1, then ad be.

(b) If = ft, then ad bc.

(c) If f-) > -4.1[, then ad bc.

9. (a) Is there an integer "between" 2 and 3? That is, is

there an integer x such that 2 < x and x < 3? If

so, name one.

(b) Is there a rational number between 2 and 3? If so,

name one.

2 3
(c) Name a rational number between 7 and zr .

(Hint: You might find the "average" of the numbers.)

(d) Name a rational number between and .

(e) Given any two rational numbers, do you think it is

possible to find another rational number that is

between them? Give an argument for your answer.

In problems 10 - 30 make the indicated rational number

computations.

1 1310. f 21. -2 8)

11. 3 + g 22, (-2 ip) 8
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12. 7 23. 21 -

13. 7 I 24. - 21
2

14. - 2 25. = 3

315. - - 2 26. 1 -3

16. 4 ... 2 27. 3 A 10

17. 2 + 28. (1 6) +3 +2

18. (4 9) 29. (2 +1) (14. 2)

19. 2 + (i- + 3) 30. (5 (Zi 3)

20. (2 + i) + 3

In each of the problems 31 - 36 decide which of the

rational numbers in the pair is smaller .

31.

32.

-3,

14,

33.

34.41-5

12.18 Decimal Fractions

-251 4
'

35. 6, 4;

36. 1, 19909

In the preceding sections, we have developed the system

(QJ-1.A). Now we look at another way of naming rational numbers

a way that is based on the idea of place value. You are probat

already familiar with the idea of place value; for instance,

when we write "3607" we mean

(3 1000) + (6 100) + (0

(3 103) + (6 102) + (0

10) + (7 1),

101) + (7 1).

or
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This form is referred to as "expanded notation."

In your elementary school work, you probably saw charts

like the one below which explain the place value scheme used in

writing names of rational numbers that are also whole numbers.

1 5 4 8 7 6 3

106 105 104 103 102 10 1

v)z0
2;j
-i.

N
0
a
z

ce
w

viiv)0 =Ozo
i F-

v.,0z
v)

z
L112

v.,

az
v<)n0
1E

ep.,

,--1w
cx0z
=

v)6
1-

!-p.
W

0

Thus, in "1,548,763" the "7" represents 7 hundreds (that is,

700), since it is in the "third place" to the left of the

decimal point. (In writing the name of a whole number, it is

not common to mark the decimal point, but it is at the extreme

right.) There is a very important pattern in this place value

scheme. As you move from left to right, the value associated

with each place is 110 of the value associated with the preceding

place. Thus, with the third place we associate the value 100;

1
but with the second place, we associate the value To- 100 or 10.

In order to have names for all rational numbers (not just whole

numbers) we extend this pattern to the right of the decimal point.

That is, the value of the first place to the right of the decimal

point is r(37,- 1, or thethe value of the second place to the

1 1 1
right of the decimal point is --

10
-0 or To . We may also

1 1indicate To as 1752. The table below shows the values associated

with the first six places to the right of the decimal point.

(You should be able to extend the table as far to the right as

desired.) 293
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3 4 0 7

10 1102 1103 44 1105 106

N=
Z
W
I-

Nx
I-0
LI.1

Ct

Z
m
=

tn
=1...

oz.<
IA

0=
I-

tox
1--
oz,:(
IA

z o
W x
1- 1-

0=
i---

" ,L1 Z
La+ .4(
Ct Vi
13Mz 0
m =
= I-

0
I-s.Ar0
II-
_J-

In the table you see the numeral ".3407." The table makes it

easy to see that this means

( 3 (4 (o 1OLoo) (7
1

).

But this is also

3000 400 0 7 3407
10000

+ +
10000 10000 10000 10000

(Do you see why?)

Therefore,

.3407 - 100004

and ".3407" is a decimal fraction name for a rational number.

kiestlon: Can you write an equation of form "b x = a"

where a and b are integers, whose solution is

the rational number .3407?

If you are not already familiar with decimal fraction

notation, the following examples should help to make it clear.

Example 1: ".25" is the name of a rational number.

Represent this rational number by an irreducible

fraction. 294
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We know that .25 = (2
ion (5 100)

20 5
100 100

100

"_E.52
is

anOf course, not irreducible fraction.
100

But we know that TR - 11r . Therefore,

.25 = 4
1

.25 .

Emile 2: Represent the rational number .250 by an

irreducible fraction.

250 25.250 -
1000 100

Do you see then that this example is really the

same as Example 1? Again, the irreducible

"4 1
11

fraction called for is . That is,

.250 = .25 = .

On the basis of Example 2, you should begin to see why it

is true that some rational numbers have an infinite number of

decimal fraction representations. Thus,

14 = .25 = .250 = .2500 = .25000, etc.

Question: Do the decimal fractions ".4" and ".400" repre-

sent the same number? Why or why not?

Example 3: Represent the number 4.18 by a fraction t,

where a and b are integers.
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4.18 . 4 + 300 .
400But 4 .
loo *

18so, 4.18 400

16U

418
loo

Example 4. Represent the rational number by a decimal

2 ,
fraction. We know 5 = To-4 . (Why?) Therefore,

25 = .4. Of course, we could also use ".40,"

".400,H ".4000," etc.

Example 5: Represent 155 by a decimal fraction. An

u

5
expression such as 15= is sometimes called

a mixed numeral, since it looks as though it is

composed of a symbol for a whole number together

with a fraction. The important point to under-

stand is that it means

2
15 + 5

Therefore, from Example 4 we know:

2
15-

5
= 15 + .4

=15.4

3Example 6 Represent g by a decimal fraction. We know

3that g is a quotient; namely, 3 8. Therefore,

in the space at the right we carry out this

division. Another way to

think about this division

is as follows:

3 30001000 8- =

375.296

.375

813.00o

2.4

6o

4o

4o
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3 375Then, since 1000 $ 375, (Doe7m

,J 1000 .

you remember how a rational number was defined

as the solution of an equation?)

12.19 Exercises

1. Express each of the following decimal fractions as an

" a
irreducible fraction .

(a) .3 (f) .03 (k) 3.05

(b) .32 (g) .003 (1) 25.1

(c) .320 (h) .000003 (m) .625

(d) .325 (i) .500 (n) 10.625

(e) 7.3 (j) .005 (0) .33

2. We know that every rational number is the solution of an

equation of the form "b x = a," where a and b are

integers, b 0. For each of the following rational

numbers, write an equation of which the number is the

solution.

19
Example: .19 100

Therefore, .19 is the solution of "100 x = 19."

(a) .5 (e) .33 (i) .6o (m) -.5

(b) .7 (f) .333 (j) .6 (n) -.05

(c) .08 (g) 2.7 (k) .123456 (o) -2.7

(d) .07 (h) .375 (1) .333333 (p) -.375

3. Find a decimal fraction name for each of the following

rational numbers. (The rational numbers listed in this
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exercise are so frequently used that it is advisable to

remember their decimal fraction representations.)

4. For each of the following rational numbers, write four

other decimal fractions which represent the same number.

(d) 25.6

(e) 4.o

(f) .025

(g) .000005

(h) .25

(1) 5

5. Recall that a rational number can be represented as a
"a"

quotient 15., where a and b, the numerator and denomina-

tor, are integers.

(a) In the decimal fraction ".5," what is the numerator?

What is the denominator?

(b) What are the numerator and denominator of ".00007"?

(c) What are the numerator and denominator of "8.2"?

(d) Does every decimal fraction represent a rational

number? Explain. (How is the numerator determined?

How is the denominator determined?)

6. Find a decimal fraction which represents each of the

following rational numbers. (See Example 6 of Section

12.18.)
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(b) 20

(c)

12.20 Infinite Repeating Decimals

(e)

(f) 2600

Can every rational number be represented by a decimal

fraction? The exercises in the preceding section may lead you

to answer "yes," and although this is correct, there is a major

difficulty with many rational numbers. As an example, let us

try to find a decimal fraction for As As before, we know this

is a quotient, and the appropriate division is shown below:

.3333...

311.0000

9

10

9

10

9

10

9

1

Do you see the difficulty? In this case, the division

process is something like a broken record. For as long as we

care to continue writing, we will have to place a "3" in each

place to the right of the decimal point. Thus this decimal

does not "end" or "terminate" as it does, for example, with

. .375. (See Example 6 of Section 12.18.)

How then can we represent with a decimal fraction?

One answer lies in giving an approximate decimal fraction. To
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see this, study the following steps.

o < <

We know that is "between" 0 and 1, and we say that

is in the closed interval [0,1]. In terms of a number line

1
this means that the point representing 3 lies on that part of

the line consisting of the points representing 0 and 1, to-

gether with all the points between those two:

1We can also place
3

in smaller and smaller intervals, as

follows:

.3 <35

.33 < e

.333 < -5

.3333 < 3

.4

34

< .334

< .3334

1
3

4
.3

1

14

.33

1
3

.34

4
.333

1
3

.334

.3333 .3334

Do you see that in a way we are "squeezing" the number 4?

Each of the above intervals is smaller than the one before it,

and is contained in it. We call such intervals nested inter-

vals. Thus, we have a sequence of nested intervals containing

1the rational number
3

Although we stopped with the interval

[.3333, .3334], the sequence goes on without end.
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Question: Continuing in the pattern above, what is the

next interval in this sequence of nested

intervals?

If we form a sequence of the left end points of these

nested intervals, we get: .3, .33, .333, .3333, .33333, a

sequence of rational numbers. None of the numbers in this

sequence is equal to w
1

. For instance, consider the first num-

ber, .3:

.3
3

.3 p - canIn fact, .3 < . We c find the difference

1
between

3
- and .3 as follows:

1 1 3

7 .3 TO"

10 9 1
To- 3,5

Therefore, although .3 1h 3, it is "very close" to A,

because the difference between the numbers is small. We can

1
say that .3 is an approximation to 3: and write:

This approximation is said to be correct to tenths or to

one decimal place.

Next let us consider the second number in the sequence, .33.

1
The difference between this number and 3 is computed below:

'33 4:4
100 99
00 300

1

TO
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Therefore .33 is a better approximation to thanthan is .3.

That is, it is closer to 3 since it differs from it by only

1
instead of To- . (How do we know that 76 < ?) Thus

we write

.33,

and say that this approximation is correct to hundredths or to

two decimal places.

In fact, as you might have guessed, each number in the

sequence

.3, .33, .333, .3333,...

is a closer approximation to 7 than the number preceding it.

1
Question: What is the difference between 3 and .333?

Though we shall not explore the matter here, it is true that by

going far enough in the sequence you can get a number as close

1
to 7 as you like.

1Now, from the number 3, we have learned a very important

fact. Not every rational number can be expressed by a terminat-

17decimal fraction. Many rational numbers, such as , have

decimal fraction representations that are infinite, repeating

decimals.

As another example, let us work with the rational number
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2424...

3318.0000

66
1 4o

1 32

8o

66

14o

132

8

h <.2,
33
8

< 25

8.242, h 73< < .2425

h 8
.24242, < < 242425

73

833 .2' (correct to hundredths)

3; .2424 ( to four decimal

. 242424
places)

As with 71 , there is no terminating decimal representation for

77, but there is an infinite repeating decimal associated with

it, and we can approximate .3-3. to any desired number of decimal

places.

12.21 Exercises

1. (a) What is the difference between 11 and .333?
3

(b) What is the difference between 1 and .3333?
3

(c) Which of the numbers, .333 and .3333, is a better

1
approximation to

3.9

2. (a) Write an equation of the form " b x = a," where a

1
and b are integers, which has 7 as solution.

(b) Write an equation of the form " b x = a," where a

and b are integers, which has .3 as solution.
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(c) Write an equation of the form "b x = a where a

and b are integers, which has .33 as solution.

(d) Would the same equation work for all of the parts

(a), (b), and (c)? Why or why not?

3. In looking for a decimal fraction representation of i

the division process below might be used:

.1666 ...

6 1 1.0000

6

40

36

40

36

40

36

4

Thus, we again get an infinite repeating decimal, although

the digits do not start repeating right away.

(a) What is the difference between and .16?

(b) What is the difference between and .17?

(c) Which is a better approximation to b, .16 or .17?

(d) What is the difference between and .166?

(e) What is the difference between and .167?

(f) Which is a better approximation to b, .166 or .167?

(g) Which is a better approximation to b, .17 or .167?

1
(h) What isthe best approximation to E, correct to four
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decimal places?

4. For each of the following rational numbers, write the

best decimal fraction approximation, correct to four

decimal places.

5. Consider the sequence below:

.1, .11, .111, .1111, ...

(a)
1

What is the difference between g and .1?

(b)
1

What is the difference between g and .11?

(c)
1

What is the difference between g and .111?

1
(d) What is the difference between g and .1111?

(e) Suppose the sequence continues in the pattern

suggested by the first four terms. How far would

you have to go in the sequence to find a number that

9
differs from

1 1
g by 9,000,000'

6. (a) Give an approximate decimal fraction (correct to

three decimal places) for the rational number

2i =

1
(b) Is the decimal fraction representation of 2-

3
an

infinite repeating decimal? (Remember that the

decimal fraction need not start repeating right

away.)
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7.
1Consider the number 7 .

(a) In dividing by 7, how many numbers are possible as

remainders? (Remember that a remainder must be less

than the divisor.)

(b) Carry out the division process for 1 + 7 to twelve

decimal places.

(c) At what stage in the division process did you get

a remainder that had occurred before?

(d) At what stage in the division process did the

decimal fraction start "repeating"? Can you ex-

plain why it happened at that particular time?

8. In carrying out the division 3 + 8, what remainder occurs

that causes the decimal fraction to terminate?

9. Try to give a convincing argument for the following:

The decimal fraction representation for any rational

a
number E is either a terminating decimal or an

infinite repeating decimal.

10. Write a sequence of nested intervals all of which

contain the number
1

-- . Begin with the interval [0,1]

and get a total of five intervals. Also show the

intervals on a number line.

11. Explain why the following sequence of intervals is not a

nested sequence:

[0,1], [i,d, [1.5,2.5], [12.2]
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12.22 Decimal Fractions and Order of the Rational Numbers

We have already seen how to tell which of two rational

a
numbers E and u is less, when fractions are used to represent

the numbers. Now let us see how to make such a comparison when

decimal fractions are used.

Example 1: Which is less, .3 or .4?

Since .3 = 3 4and .4 .1

it is easy to tell that .3 < .4.

Example 2: Which is less, .2567 or .2563?

Notice that first three digits of these decimal

fractions agree, place by place. The fourth

decithal place is the first one in which they differ.

256 7
2567 T."6175 T.CRM

.2563 10000

Therefore, .2563 < .2567.

Example 3: Which is less, .8299 or .8521?

.8299 =
8 299

10000

.8521
8 521

10000

Therefore, .8299 < .8521.

Notice again that these two decimal fractions

agree in the first decimal place. The first

place in which they disagree is the second place;

and 2 < 5.

These three examples show that it is very easy to tell

which of the two rational numbers is less when the numbers are
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represented by decimal fractions. Suppose we have two decimal

fractions

.81 aa a4

and

.blbab314

and al = bl, as = ba, but ba < aa. Then do you see that

.1011012b3b4 < .alaaaaa4? In other words, the way to tell which

of two decimal fractions represents the smaller number is to

look for the first place (reading from left to right) in which

they disagree; the one which has the smaller entry in that

place represents the smaller number.

Example 4: Which is less, 23.524683 or 23.524597?

The first place in which these decimal

fractions "disagree" is the fourth decimal

place. And since 5 < 6, then

23.524597 < 23.524683.

12.23 Exercises

1. In each of the following, copy the two rational numbers.

Then place either "<" or ">" or "=" between them so that

a true statement results.

(a) 12.5 12.4 (f) 826.33 826.30

(b) 8.33 8.34 (g) 5.4793293 5.4789999

(1) .1257 .1250 (h) 548 551

(d) .1257 .125 (i) 1.9999 2

(e) .6666 .6667 (j) .9874 .9875

2. This exercise is similar to Exercise 1, except that
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negative rational numbers are used. Remember that

although 1 < 2, for instance,

.5 < .6, we have -.6 < -.5

-2 < -1. Thus, although

(a) -3.567 -3.582 (e) -42.80 -42.85

(b) -.12345 -.12453 (f) -42.8 -42.85

(c) -.99 -1 (g) -12.9999 -12.9998

(a) -100.555 -100.565 (h) -4.378 -4.3779

3. Is it possible to find a rational number x "between"

.354 and .357? That is, we want a number x such that

.354 < x < .357.

Notice that these two decimal fractions agree in the

first two places, but disagree in the third place. Thus,

for 2i, we can use a decimal fraction that agrees with the

two given ones in the first two places, but has in the

third place a digit that is between the two given third

digits. For example, x might be .355, since .354 < .355 <

.357. (This is not the only value of x that can be used.

Can you give others?)

Now for each pair of rational numbers below, name

a rational number that is between them.

(a) .6, .8 (e) 5.420, 5.430

(b) 2.35, 2.39 (f) 5.42, 5.43

(c) 45.987, 45.936 (g) 3.8, 3.9

(d) 102, 108 (h) 2.99, 3

Compare Exercise 3 here with Exercise 9 in Section

12.17. Do you see that between two rational numbers it

is always possible to find another rational number? For

this reason, we say that (4k) is _dense: that is, the 309



-304-

rational numbers form a dense set.

4. Given the rational numbers 1 and 2 find a rational

number x such that 1 < x < 2; then find a rational

number y such that 1 < y < x; then find a rational

number z such that 1 < z < y; then find a rational

number w such that 1 < w < z.

Draw a number line and represent the numbers 1,2,x,y,z,w,

by points on the scale.

5. Do the integers form a dense set? Why or why not?

12.24 Summary

In this chapter we have developed the rational number

,system. In order to see why this system is such an important

one, let us retrace some of the steps in its development.

In the whole number system, there are two binary operations,

addition and multiplication. Subtraction and division are not

operations. Thus, for example, the subtraction 2 - 5 and the

division 2 5 are not possible in (W,+,). We might say that

subtraction and division are "deficiencies" of the whole number

system. Part of our work this year has been concerned with re-

moving these deficiencies.

We first removed the subtraction deficiency by developing

(Z,+,°), the number system of integers. Subtraction is a binary

operation in this system, 2 - 5, for example, is -3. And since

(Z1+,6) contains (W,+,), we have in the integers all of the

operations and properties of W, together with the new operation

of subtraction. Thus, Z is an "extension" of W, a fact suggested
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extension to-

make---

make subtraction

an operation

by the following diagram:

However, division is not an operation on Z, and in this

chapter we removed this deficiency by developing the system

(Q±) in which division (except by 0) is always possible.

For example, the quotient 2 + 5 is the rational number we have

2
called 5. And since (Q,+,.) contains (Z,+,), Q is an extension

of Z. Therefore, we can complete the above diagram as follows:

+, )
extension to

subtraction
an operation

9

extension I to make
division 1 an operation

(Q, )
In (Q,+,) the four operations are defined as follows, (b,d A 0):

a c ad + bc
E d bd

a 0 a , -0
E

a c ac
E d bd

a c _ a . (0 A 0)+ b c

(Q,+,*) has the following important properties.

If x, z, and z are rational numbers, then:
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x + (-x) = 0
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(x y) z , x (y z)

x 1 = x

x
1
= 1 (x 0)

x y=y x
x(y+z)=xy+xz

Every equation "px = q" where 2 and a are rational numbers,

and p A 0, has a solution, namely x = q + p, in (C1,+,)

The rational numbers are ordered. If
a

and are rational

numbers, with b and d both positive, then

17-)

a c
< --d- if and only if ad < bc.

The rational numbers form a dense set. Between any two

different rational numbers, there is another rational number.

12.25 Review Exercises

equations.

(f) 12 x = 5 (k) 102 x = 511

1. Solve the following

(a) 4 x = 3

(b) 3 x = 4 (g) 3 x = 20 (1) -55 x = 30

(c) -4 x = 3 (h) 3 x . 21 (m) 87 x = 87

(d) 4 x = -3 (i) 7 x = 5 (n) 87 x = 0

(e) -4 x = -3 (j) -3 x = 8 (o) 4 x = a

2. Compute the following.
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(d)

(e)

7

85

- 2
.2

85

(1)

(m)

8

_8

3. Compute the following.

(a) (i + 4) +

(b) +

(c) + +

(d) 13 (4 4. i)

(e) (1,0, + ) +

4. Compute the following:

(a) 4+ ;

(b)

(e) t/ + -c9-1

(n.) + 8

(0) 3 +7

(p) 7 3

-2

3

T:6

7
4" 5

....

4
0

3

4

-7

5 9
7 5
0

4"4" I

167
"3
2

4"

17

5

5. Write each of the following in expanded notation.

Example: .23 = (2

(a) .6

(b) .63

(c) .063

(d) .00603

176) + (3 470)

(e) 25.08

(f) 3.175

(g) 2.000005

313 (h) .3333
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6. Write a decimal fraction representation of each of the

following. If the decimal does not terminate, give an

approximation to four decimal places (i.e., correct to

ten thousandths).

(a) (r)

(b)
(g)

(c) (h)

(d)
5 (1)

(e) (j)

7. Copy the following, and place one of the three symbols,

"<," '5" or "=" between the pairs of rational numbers so

that e true statement results in each case.

(a) 2 (d) .3475 .3429 (g) .00001 .000009

(b) 4 (e) .333333
(,, 20 25
IL,

f_N 12 25 1_,A

kul 5 -7 li] .375 ;

8. For each pair of rational numbers below, write the name

of a rational number that is between them.

314

( c) II

1 17
(d)

2' 32

- -----
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( e) 3,

(f) . 3)4.5, 311.6

9. Solve the following equations.
_3

_3-5
(c) x 14

(d) x =4

315
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CHAPTER 13

SOME APPLICATIONS OF THE RATIONAL NUMBERS

13.1 Rational Numbers and Dilations

Earlier, you learned that "Dab" means "Db o Da," or the di-

lation Da followed by the dilation Db. At that time, it was re-

quired that a and b be integers. Let us now consider the com-

position Db o Da where a and b are rational numbers. For the

present we shall restrict the discussion to dilations on a line.

Consider

Di o D3.

Since D
3
acts first, we show below the images of certain points

under this dilation.

Ara:WM.
-3 -2 -1 0 21 .1 1 3

4 1 4
6 7 8 9 10

Since we are using the rational numbers, any point with a ra-

tional coordinate has an image under this dilation. For in-

stance, the point with coordinate 4 is mapped into the point

9 34 94with coordinate 4, since 3 . = .

Question: Under dilation D3, what are the coordinates of

the images of the points having the following

coordinates:

2
3

1
3, 1, , 10, 100, -1, 3.

In order to be consistent with the way in which we interpreted

De where a is an integer, we shall say that under D4 a point P

with coordinate x is mapped into a point P' whose coordinate is

. x. The images of certain points under the dilation Di are

316



shown below.

-311-

te-Th er-1 2.-.3.
-3 -2 -1 0 I 1 2 3 4 5 6 7

Question: Under the dilation Di, what are the coordinates

of the images of the points having the following

coordinates:

1, 2,
1

2
3

, 10, 100, -2.

Now we consider the compositions Di o D3. The diagram below

show' the image (under this composition) of the point with coor-

dinate 2.

-3 - 2 -; 2 3 4 .5 6 7

Note that D3 takes 2 into 6, then D1 takes 6 into 3. Thus (Di o

D3) takes 2 into 3. Generally, under the composition Di o D3,

any point P has an image P' whose distance from the origin is

times the distance of the point P from the origin. In other words,

we may write:

Di o D3 = Di

Thus we see that the Illation D3 may be considered as the com-

position of two dilations, the first D3, the second Di.

Question: What is D3 o Di? Explain why Da o D, = D1 o Da.

B

Question: Since under D3 the image of any point is 1 as far
2

from the origin as the point itself, what do you

think the inverse of Di is? Consider Da o Di= D1.
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Question: Express as the composition of two dilations.

It is also instructive to look at what happens to a segment

under a dilation such as D3. In particular, let us look at the

segment whose endpoints are those having coordinates 0 and 1; such

a segment is called a unit segment, and we shall denote it by "U."

1;

-3 -2 -1 0 1 2 3 4 5 6 7

Now since Di is the composition D o D3, do you see that segment

U is first "stretched" to a segment 3 times as long.

-2 -1

Then, that segment is "shrunk" to a segment half as long, as the

diagrams show. The final segment, which has been labeled

1 1 2
2

V3 is then the image of U under the dilation D3. We may simply

write:
V = 1U,

which may be read "V is 1 times U," or "V is 1 the length of seg-

ment U."

Example 1. If a segment X has a length of 10 Lnches, what

is the length Of IX?

We could think of this problem in terms of the

composition of dilations DI. o D3 on a line. If

the segment X is first "stretched" to a segment

3 times as long, the resulting segment has a

length of 30 inches. If that segment is then

"shrunk" to a segment one-fourth as long, the
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1
length of the resulting segment is 4 30, or

:19 inches. In practice, of course, it is not

necessary to explain the solution in this way.

We may simply write

/ 15\of 10 = 10 = lr
30 tor 7).

Example 2. If segment X has length 10 inches, what is the

length of 3X?

4oof 10 = -4 =10 inches.
3

Whole number dilations, D1, D2, D3---are sometimes called

stretchers where D
1
is the identity stretcher. The unit frac-

tion dilations D1, D1, D1---are sometimes referred to as shrink-

s 2 3

ers. D
1
is the same as D

1
or the identity shrinker.

1

Notice that in Example 1 the final segment is shorter than

the segment X, while in Example 2 the final segment is longer

than X. Is there any way to predict this beforehand from the

dilations D3 and D4? (Compare the "stretcher" and "shrinker" in

7
each case.)

Questions How must a and b be related so that under, the

dilation D
a

:

(1) the image of a segment is longer than the

segment itself?

(2) the image of a segment is shorter than the

segment itself?
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(3) the image of a segment is the segment it-

self.

Answers: (1) a)b; (2) a<b", (3) a = b.

13.2 Exercises

1. Draw three separate number lines, and on each mark points with

the following coordinates:

0, 1, 2, 2, , and -1.

(a) On one of the drawings, show the image of each of the

points marked under the dilation D2.

(b) On another of the drawings, show the image of each of

images from part (a) under the dilation D.

(c) On the third drawing, show the images of each of the

original points under the composition 14 o D2.

(d) Express the composition of dilations in part (c) as a

single dilation.

(e) Express each of the following as single dilations Dx,

where x is a rational number:

Di o D4, D1 o D7, D1 o D10, D10 o D1.

5 3 2 2

2. Draw two number lines, and on each mark points with the fol-

lowing coordinates:

0, 1, 2, 3, 4, i and -2.

(a) On one drawing, show the image of each of these points

under the dilation Di

(b) On another drawing, show the image of each of the oric-

inal points under the dilation D2.
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(c) Is it correct to write D1 = D2?

(d) When is Da = Dc?

a

3. On a number line, let P be the point with coordinate 2.

(a) Let P' be the image of P under D5. What is the co-

3ordinate of P' ?

(b) Let P" be the image of P' under D2. What is the co-

3ordinate of P"?

(c) What is the image of the original point P under the

composition D
2

o D
5
?

3 3

(d) Write the composition in part (c) as a single dilation.

4. (a) Write a single dilation D for the composition D7 o D5.

3 7

(b) According to the definition in Chapter 12, what is the

7 . ,product 3

In this section, we have used dilations to give meaning to a

statement such as of X, where X is a segment. And this kind

of expression is common in everyday uses of mathematics. For ex-

ample,ample, if X represents a class of students, then 3 of X (that is,

4; of the class") can be interpreted in much the same way as with

2
segments. We really mean 3 times the measure of X. And in this

case, the measure is a whole number. Thus, if there are 30 peo-

ple in the class, of the class" is 20, since ; 30 = 20.

Problems 5 through 12 are of this kind.

5. There are 100 senators in the United States Senate. On a
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13recent vote, fb of the Senate votes "yes" on a certain bill.

How many Senators voted "yes"?

6. A certain state has an area of 70,000 square miles.
3

100
of

the state is irrigated land. How many square miles in the

state are irrigated?

7. Jim has 2,000 in the bank, and the bank is supposed to pay

3him rm of that amount for interest. How much should Jim

receive?

8. In 1960, the population of a certain town was 18,000. To-

dayday the population is 3 of that number. What is the popu-

lation today?

9.
23.Afamilyspendsof its income on food. If the income
100

for one year is $8500, how much money does this family spend

for food in one year?

10. If one pound of ground meat costs $.90 what will be the cost

of 0.1 pounds?

4
11. (a) If Jim's height is of Bill's height, who is taller?

(b) If Mary's height is of Sues height, who is taller?

(c) If Bob's height is 14 of John's height, who is taller?

12. In a certain town, there are 5000 registered voters. In a

recent election, 3500 people voted. What "fraction" of the

town's registered voters actually voted? (Express your an-

swerswer by an irreducible fraction . Check your result by

showing that g of 5000 is 3500.)

13. In this problem we consider dilations Dx in the plane, where

x is a rational number. Just as Z x Z is the set of all

points with coordinates (a,b), where a and b are integers,
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so Q x Q is the set of all points with coordinates (x,y),

where x and y are rational numbers.

(a) Draw a pair of axes, and plot all points whose coordi-

nates are (a,b), where a and b are integers between -4

and 4.

(b) Now plot a point with coordinates (2,4). Note that this

point does not belong to Z x Z, but it does belong to

Q x Q.

(c) Consider the dilation D2. Under this dilation, the

image of (2,4) is defined to be (21,2'4), or (34).

Plot this image point. (Do you see a segment in the

plane that has been "stretched" to twice its original

length?)

(d) Under the dilation D, the image of (i,4) is (i

;' ' 4). Plot this image point. (Do you see a seg-

ment in the plane that has been "shrunk" to of its

original length?)

14. From Exercise 13, we make the following definition: If

(x,y) is an element of Q x Q, and Dc is a dilation where

c is a rational number, then the image of (x,y) under Dc

is (cx,cy).

(a) Plot the images of the following points under Da:

(2,8), (4,12), (9,-4), (-,6), (-2,-12), (0,0), (1,1).
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(b) Now for each image from part (a), plot

the image of that image under D4 .

7

(c) How are the dilations D
3

end D
4

related?

15. Show that De 0 Db = Di

"5 -87

(a) when b < a;

(b) when b > a;

(c) when b = a.

16. What is the inverse dilation of :

(e) D2 (b) D1

7
(c) D

4
(d) Dx (y / 0)

17. (a) How would you describe the images of the points in

Q x Q under the dilation D
o
?

(b) How would you describe the images of the points in

Q x Q under the dilation D1?
1

(c) How would you describe the images of the points in

Q x Q under the dilation D
-1'

13.3 Computation with Decimal Fractions

In Section 13.1 we dealt with such problems as finding

1
of X. For example if X is a segment having length 22 inches,

then

3
-1.

v 3 A.
7 ef

5
17
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At times, problems such as this are expressed in terms of decimal

fractions. For instance, we could just as easily speak of find-

ing .75 of a segment X whose length is 2.5 inches. Then we would

have to compute

.75 x 2.5.

The result should be the same as before, How is the com-

putation with decimal fractions carried out? Study the com-

putation below.

.75 x 2.5 =
n
75

100
75

10
5

1000
75

1.0

Thus, .75 x 2.5 = 1.875.

This computation could be done as below:

2.5

x .75

125

175

1.875

There is a relationship between the number of digits to the right

of the decimal point in the product 1.875, and the number of

digits to the right of the decimal point in the two factors, 2.5

and .75. Do you see what the relationship is? (It is a result

1 1 )
of the fact that TO-u = x _L

lo 1000"

Question: To which of the following is the product

1.5 x 1.5 equal?

.225, 2.25, 22.5, 225.

What is the sum of $2.45 and $3.87? The computation is shown beim/.

$2.45

+ $3.87

$6.32
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Notice that we add tenth to tenths, hundredths to hundredths, etc.

2.45 = 2 + and
'+10 100

8 7
3.87

3 10 100

Then,

2.45 + 3.87 =

=

(2

(2

4 5 8
+

10

....._.5.

+ (100

7
+

10

+ 3)

+
100

)+ (3

4 8

)

100

+ (10 + 10)
__./.

+ 100)

J

5

. 6

+

+

12

+

12

10

13

10

--3-
10

---
1)0

2

100

2

100

= 6.32

10 1,
(since --100 10/

10
(since TE = 1)

In these steps, you should be able to point out where we have used

the associative and commutative properties of addition of rational

numbers.

Subtraction computations with, decimal fractions are done in a

way similar to addition computations, as the following example il-

lustrates.

Example 1. Subtract 4.387 from 12.125.

12.125
- 4.387

7.738

(We ca:, check this result by nong that

7.738 + 4.387 = 12.125.)

The quotient of two rational numbers may also be computed when
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decimal fractions are used to represent the numbers. First, con-

sider the quotient .125 .5. We may express this quotient as

.125

.5

and we know this is the same as

.125 10
x 115 . (Why?)

Furthermore, 10 1.25
, 5 10 5

125
Therefore, instead of working with the quotient '125

5

25
we may compute the equivalent quotient

1.
The computation is

5

shown below:

.25

5 11.25
1 0

25
25

This process is justif.ed by the following:

1.25 1 1 1 1 ,1
. x 1.25 = x (100 x 125)

x c5- x 125)

1
x 25 = .25.

100

In the preceding division problem we multiplied the given

10
quotient

.125
----by -- so that we obtained the equivalent quotient

5 10

1.25
, in which the denominator (divisor) is a whole number. If

5

we try the same approach with the quotient

.0221
.13

100
(Do you see why?) Thus,we choose to multiply by

100 '
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.0221 .0221 100

.13 .13 100

2.21

13

.17

0221Therefore, 2-7J - .17.

.17

13 12.21

13
91

91

Question: What is the product .17 x .13?

Often, quotients of rational numbers (expressed by

decimal fractions), need be carried out only to a specified

number of decimal places. Study the example below, in which

the quotient has been computed correct to two decimal places

(hundredths).

Example 2. What is the quotient when 253.42 is divided by

8.7?

253.42 _ 253.42 x 10 2534.2

8.7 8.7 10 87

328

29.128

87 2734T200
174

794

112

87
250

174

760

696
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Therefore, correct to two decimal places,

the quotient is 29.13, That is,

253.42
29.13

8.7

(The symbol"Z" means is approximately equal to.")

We wrote the answer (correct to 2 decimal

places) es 29,13, rather than 29.12, be-

cause 29.128 is closer to 29.13 than to

29.12.

Questions: What is the product 29.13 x 8.7?

Why is this product not equal to

253.42?

-13.4 Exercises

1. Compute the following:

(e) 2,56 + 8.94

(b) 10.487 + 35.733

(c) 42.56 - 387.29

(a) 4.5 x 2.5

(e) 2.25 x 2.25

(f) -3.5 x .4

2. Compute the following quotients:

4.08

(a) 2.4

(g) -4.85 + -6.15

(h) 21.5 - (-7.6)

(i) 55.0 - 39.8

(1) 39.8 - 55.0

(k) 4.5 x .45

(1) -8.65 - 7.15

40.8
(c)

.408 408
(b) 24 .24 0 )

3. Explain why all the quotients in Exercise 2 are the same.

4. Compute the following quotients, correct to two

decimal places, (See Example 2 of Section 13.3.)
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(a)

(b)

(c)

40.8

48.4

(d)

(e)

(f)

L1

.17

.005
2.6

312.48

58o

.32

875.42
3.2

5. During one month, Mr. Sales makes the following de-

posits in his bank!

$42.50, $97.28, $10.12, $106.77.

What is the total of these deposits?

6, At the beginning of the month, Miss Lane's bank

balance was $412.65. During the month she wrote checks

for the following amounts:

$5.79, $36.48, $10.20, $75.00, and $85.80

Also, during the month, she made one deposit of $8580.

What was her bank balance at the end of the month?

7. (s) Find the quotient 4 , 8 .

(b) Find the same quotient as in part (a) by first

expressing each number by a decimal fraction.

8. If the length of segment X is 3.75 inches, whet is the

length of segment V, if V = (1.8)X?

If a certain material sells for $.45 a yard, how

many yards can be bought for $5.40?

13.5 Ratio and Proportion

At the right are two sets of elements, A and B. The

number of elements in set

A is 2, end the number of

elements in set B is 6
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We could say, by subtraction, that

the number of elements in b is 4 more than

the number of elements in A. There is

another common way of comparing the sizes

of the two sets; this is by stating that the number of elements

in B is three times the number of elements in A. That is,

3 2 = 6; or, what amounts to the same thing,

6
r = 3.

6
Here we have used the quotient -f to compare tha sizes of the

two sets. When used in this way, a quotient is called a ratio.

The equation above may be read:

The ratio of 6 to 2 is 3.

There is another way to write
6
= 3 when you mean a ratio.

It is

6:2 = 3.

Notice that we may say:

The ratio of B to A is 3.

This means that if the number of elements in A is multiplied

by 3, you get the number of elements in B.

Pictured on the next page are two more sets, C and D, which

have 12 elements and 4 elements respectively. What is the ratio

of the number of elements in C to the number of elements in D?
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D

The ratio is 34 (or 12:4); end since 4 - 3, there are 3

times as many elements in C as in D. Or, if the number of

elements in D is multiplied by 3, the result is the number

of elements in C.

Notice that in the two examples above, the ratios (quo-

tients ) are equal. That is, -g 3. This is true even

though the sizes of the sets in the two examples are not the

same A sentence such es

6 = 12
7'

which shows that two ratios are equal, is called a proportion.

The sentence is sometimes written as "6:2 - 1214." In this

example, we see that 6.4 , 2.12. And, in general, two ratios

Fand if are equal if ad bc. Hence, the test for equal ratios

is the same as the test for equivalent fractions which was given

in Chapter 12, Section 4,

In terms of the sets being comparea, what does it mean

to say that two ratios are equal? In the examples above, it

means of course that in each case one set is 3 times as large
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es the other

The above diagram shows for each element in D, there are 3

elements in C Thus, the ,sets C and D compare (by means

of a ratio) in the same way as a set having 3 elements and

a set having 1 element.

Question: Can you draw a diagram like the one above

which shows that for every element in A

there are 3 elements in B?

Example 1. In Congress, 80 Senators voted on a certain

bill, end it passed by 3.1. How many Senators

voted for the bill?

This kind of language is often used, and

what it means is that the ratio or the number

voting for the bill to the number voting against

the bill is 3:1. It does not mean that only

3 Senators voted for the bill, and only 1 against.

As a matter of fact, in this case 60 Senators

voted "yes" and 20 voted "no." Do you see why?

Consider how 8o must be separated into two
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numbers having the ratio 3:1.

Example 2. Two line segments have been drawn. Segment

U-15 has length inch, end segment AR has

length 21 inches. How do the two segments

compare?

22- 2.- = +
2 2 2 2

2 1

= 5.

Thus, AMCD = 5. The length of TE is 5 times

the length of O.

Example 2 illustrates that the use of the word "ratio" is not

restricted to the comparison of two whole numbers: we may

also speak of the ratio of two rational numbers. In general,

we say:

The ratio of e rational number c to a rational

number d, d / 0, is the ouotient 3 which may

also be written c:d.

Example 3. Let g be the number of girls in e seventh grade

class, and let b be the number of boys. If

g - 12 end b - 16, what is the ratio g:b?

g 12 3g:b , -_ ,

The two sets compere in the same way es two

sets having 3 and 4 elements. Fnr every 3

girls. there are 4 boys.
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Notice also that x.16 - 12.

Example 4. Using the numbers from Example 3, what is the

ratio h.g?

16 4 4
rff

7.12 16

From all of the examples thus far, the

following generalization should be clear:

Example 5 Segment AT has a length of 24 inches, and

segment C5 has a length of 8 feet. What

is the ratio AB:CD?

Be careful! It is tempting to say that the

ratio is
24
5 - 3. But this is false. Actually

the length of CD is greater than that of AB,

since 8 feet is certainly longer than 24 inches

Since the length of CD is measured in feet, we

must also express the measurement of AB in feet:

the length of AT is 2 feet. Then the ratio

AB:CD is

2 1

The length of AB is 1 of the length of U115.
14.

We could also change each measure to inches.

Then the ratio is 24:96 or 1:4. In comparing

quantities of the same kind by ratio, both

must be expressed in the same measure.
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13.6 Exercises

1. In the drawing below, two segments, AS and AZ', have

been marked.

0

A

I 2 3 4 5

B C

(a) What is the ratio of AB:AC?

(b) For what dilation Da would the image of seg-

ment AU be segment WS?

(c) What is the ratio AC:AB?

(a) For what dilation Db would the image of seg-

ment IS be segment WU?

(e) If ri is the ratio AB:AC, and r2 is the ratio

AC:AB, what is the product ri.rv?

2. Find the ratio of the length of U to the length

of V if:

(a) the measure of U is 10 inches; the measure of

is 5 inches.

(b) the measure of U is 5 inches; the measure of

is 10 inches.

(c) the measure of U is 3 yards; the measure of

is 18 inches.

(d) the measure of U is 1 mile; the measure of V

is 2000 feet.

1
(e) the measure of U is 3 7 inches; the measure of

3V is 1 7 inches.

3(f) the measure of U is 1 4- inches; the measure of

1
V is 3 7 inches.
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(g) the measure of U is 2a inches; the measure

of V is a inches. (a/ 0)

3. Let a be the number of questions on a test. Let b be

the number of questions a student answered correctly.

LPt c be the number of questions answered incorrectly.

If a = 20, b = 17, and c = 3, find the following:

(a) the ratio of b to a

(b) the ratio of c to a

(c) the ratio of b + c to a

(d) the ratio of b to c

(e) the ratio of c to b

4. If x and are two rational numbers such that x:y, =
1

give five possible pairs of values for x and

5. If c and d are two rational numbers, which number

is greater if:

(a) c:d = (b) c:d = (c) c:d = 7 (d) c:d = 1?

6. If a and b are two rational numbers such that

(a) by what number must you multiply b to get a?

(b) by what number must you multiply a to get b?

7. Sometimes comparisons are formed in which the num-

erator and denominator are numbers resulting from

measurements involving different units. For example,

on a map a scale factor such as "1 inch = 50 miles"

means that a segment of 1 inch on the map actually

represents a segment of 50 miles in the country-
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side. Thus we have the proportional sequence of

fractions

1 2 3 4 5
50, 100, 150, 200, 250

so that a segment on the map that measures 4 inches,

for example, actually represents a segment with

measurement 200 miles.

(a) On the map described above, a 6-ff. inch seg-

ment represents a segment of what length?

(b) How long a segment must be drawn on the map

to represent a 225 mile segment?

8. Thus far we have used only positive numbers in form-

ing ratios. There are problems, however, in which

it is sensible to use negative numbers. For example,

in the drawing at the

right, a line has been

drawn in the plane, and

two points, A and B,

have been marked on the -41

line. The coordinates
+2

of B are (3,1). Notice

in "moving" from A to B,

the x-coordinate increases

by 2, which we indicate by

+2, and the y-coordinate

decreases by 4, which we indicate by -4. Now if

we form the ratio
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change in y-coordinate
change in x-coordinate

we get A, or -2. Wo say that the slope of the
+2

line is -2.

Using this definition of slope, complete the

following activities.

(a) Mark the point (3,4), and through this point

2
draw a line whose slope is y = 2.

(b) Through the point (3,4), draw a line whose

-2
slope is -T = -2.

(c) Mark the point (-2,5), and through this point

-2
draw a line whose slope is 7.

(d) Through the point (-2,5), draw a line whose

2
slope is 7.

(e) Through the point (0,0), draw two lines, one

4
- -5with slope -5- and the other with slope 4.

(f) Draw two lines, each with slope 4 Draw one

line through the point (0,6), and the other

through the point (0,2). How do the two lines

seem to be related?

13.7 Using Proportions

When we say two segments are in the ratio 2:5 we

mean that if the measure of the first segment is 2, the measure

of the second segment is 5. We can also write this ratio as the

2
fraction 5. Suppose we desire to have two boards with lengths
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in the same ratio as the segments. The first board is 4 ft.

long. How long must the second board be? If we designate the

length by x then the ratio will be x. But this must be equal to

2
the ratio We thus write

2 4

To find the number x, we consider the equality relation of

two fractions, namely

2x = 4.5

and solving for x find the solution 10. The second board must

be 10 ft. long.

Note also, that if any ratio is known, we can form many

equal ratios; merely by multiplying the numerator end denominator

by the same number. Thus

3 .6

2 2x2 4 2 2x10 10
5= 552 T5' 5 5377 15

e 2e
2 2xF
5 5-7cg 5s

b b

aHere Ta- can be any national number positive or negative but not

0. Why?

Example 1. A picture has measurements 7 inches ("length")

and 3 inches ("width"). If the picture is

enlarged proportionally so that the new length

is 10 inches, what must the new width be?

3

340
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In all enlargements the ratio of the length

to the width must be proportional to the same

ratio in the original. The ratios of the

lengths to the width are ; and -17. Thus the

proportionality factor 7 must equal 11.

7
=

10
Solving -3 - - we find 7x = 3 10 or

x = 4a Therefore, the width of the enlarged
7

2
picture must be 4-

7
inches.

Example 2. Solve the proportion

3 x
-2-8*

We solve the proportion as follows:

If 3 x then by the rule of equal

8 28

fractions 3.28. 8x

8x = 84

x = iv-, ^1

2

In other words,
3 10

8 28

Tf we know the proportionality constant and one member

of the missing ratio, we can write the proportion and solve for

x.

13.8 Exercises

1. Using whole numbers only,

(a) write two proportions having the proportionality

constant 5
1

6
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(b) write two proportions with proportionality

constant
1

4
(c) write two proportions with proportionality

constant .5.

2. In each of the following, find the number x so that the

ratios form a proportion.

(a) 2 6

9

(b) 14 x

6 12

(c) 9 10

15 X

3. Solve the following proportions.

f...1 5 15 (AN 100 7
(a) x `-' ffi x (g) 7 1-4

(e) i = (h) 5:3 = x:15

(f) = (1) = (8 / 0)

4. The ratio of the number of boys to the number of girls is

the same in two different seventh grade classes. In one

class, there are 12 boys and 16 girls. In the second

class, there are 15 boys. What is the total number of

students in the second class?

5. On a certain map there are two segments drawn, one 7 inches

long and the second 10 inches long. If the map is enlarged

so that the first segment measures 25 inches, how long will

the second segment be in the enlargement?
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6. Two triangles are drawn below. The triangles are

similar, which means that the ratios of the lengths

of corresponding sides are all the same. All of the sides

in one triangle have their lengths indicated in the figure.

In the other triangle, the length of only one side has been

marked. Find the lengths, x and y of the other sides.

13.9 Meaning of Percent

In business and social life, one of most common ways

of making comparisons is through the use of percent. In the

early colonial days this word was written as two words "Per

Centum" or "by the hundred." When people borrowed money or

goods they paid back in kind by giving e.g. so many dollars for

the use of 100 dollars, or so many bushels of corn for the use

of 100 bushels. The number 100 was a useful one since 10 was too

little for most transactions and 1000 was too much.

Today we think of "percent" as a rational number "one

hundredth." The numerical symbol "%," read "percent" is merely

another way of writing
1

or .01. If we change a fraction
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2
such as 5 for example, to s fraction with denominator 100, in

this case
100
Lo

'

2
we note that is another way of expressing 40%.5

Thus,

Note that

Similarly

4 0 = = 4 0
100 1

loo

1

o
1 - lo0o

0 loo
lo

1006.

00
io1o

--=
1755

200 200%, 5 = 500%,

- 150 = 150%,3

172 75%.

Example 1: In the picture below, there are 15 square regions,

and 6 of them have been shaded. What percent

of the squares are shaded?

The number of shaded squares is 6; the total

number of squares is 15. So the ratio of the

number of shaded squares to the total number of

6squares is And we can say that - of the

squares are shaded. However, from the discussion

above, we know that

6
40%. (Why?)

Therefore, 40% of the squares are shaded.

Example 2: Express ; as a percent. We must change ; to a

3fraction with denominator 100. Hence -8 =
loo;

8 x = 3 100, and x - 37.5.
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Hence 4 = 214 37.5%. This is sometimes

written as 37.

Example 3: Find the percent equivalent of We We use the

6
proportion 7..

100'

6 100 = 5 x

5 x = 600

x = 600 - 120.

Therefore, 75= 120.

a
Questions: In a ratio F how must a and b be related so

that the percent equivalent of the ratio is

greater than 100%? less than 100 0? equal to

10056?

Example 4: What is the percent equivalent of 3.5?

3.5 = = 0_52 = 35 .250.Jio --)100 100 J

1 1 1
Example 5: Express i% = X

100 eOu'

Question: Which is greater, or -221/0?

1 1Example 5 tells us is 2-0-5- and surely >
200.

Having looked
e

at a number of particular cases, we might cons-ider the general

a
problem). of finding the percent equivalent of a ratio: Let w be

any ratic (of course b 0). Then to say that t= = x0 is to say

a x
b 100'

Then we have:

b x = 100 a

x =
100a
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a 00
Otherwise stated, 1-5 =

1 a

13.10 Exercises

1
1. (a) 50% is the percent e fequivalent of . Write four

other ratios for which 50% is the percent equivalent.

(b) Write five different ratio:, for which 25% is the

percent equivalent.

(c) Write five different ratios for which 150% is the

percent equivalent.

(d) Write five different ratios for which 100% is the

percent equivalent.

(e) Write five different ratios for which 200% is the

percent equivalent.

2. The questions in this exercise refer to the figure below.

A C B

A C B

C C A

C A

(a) What percent of the squares have been marked "A"?

(b) What percent of the squares have been marked "B"?

(c) What percent of the squares have been marked "C"?

(d) What percent of the squares have no mark?

(e) What is the sum of the percents in questions (a),

(b), (c), and (d)?

3. Give the percent equivalent of each of the following:

(a) .5 (b) .50 (c) .25 (d) 2.5 (e) 1.5

(f) 1.25 (g) .17 (h) 1.17
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4. In the table below, each ratio is to be expressed in the

a

'
form E as a decimal fraction, and as a percent. The

first row has been filled in correctly. Fill in all the

blanks in the remainder of the table,

Ratio Fa Decimal Fraction Percent

1
.50 50%

1

g

.75

20%

.60

.20

1

3

870

4
5

.375

40%

1
15

90%

1

T.

.70

.05

3
15"

1%

34'7
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5. As you recall from Section 12.20, some ratios such as

17 cannot be expressed as terminating decimals, but can

be approximated to any desired number of decimal places.

1
How can such a ratio as 7 be expressed as a percent?

The question is answered in the same way that all other

problems concerning percent equivalents have been an-

swered. Study the steps below:

1 x
3 100

3 x 1* 100

3 x =100

100 33n1.X- -s-- -

Therefore. the ratio may be expressed as 334%.

1 m
We may also write 33% where is read "is approx-

imately equal to." Similarly, a better approximation

1
is 3- m 33.3%.

Give thl percent equivalent of the following ratios:

(a) 721-
(b) (c)

1
(d) _Ty

13.11 Solving Problems with Percents

It is common to see advertisements with statements such

as

SALE: 15% OFF ON ALL ITEMS!

Suppose that an item that normally sells for $25.00 is included

in the sale advertised above. What should the sale price be?

According to the advertisement, 15% of 25.00 should be subtracted
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from the list price. So the problem is that of finding 15%

15.
,of 25. Since 15$ means yud and "of" means multiply, we find

.15 x 25.00 = 3.75. Since 25.00 - 3.75 = 21.25, the item should

sell for $21.25 during the sale.

In the following examples, we solve some other problems,

by use of percents.

Example 1. On a test having 20 questions, a student

answered 16 of them correctly. What percent

of the questions did he answer correctly?

That is, what should his perccrt score be?

The ratio of the number of questions answered

correctly to the total number of questions is

16.
20'

16_ 80
8°'2r) 100

80% of the questions were correctly answered.

Example 2. On the same test of 20 questions, another stu-

dent missed 3. What is his percent score?

Since the student missed 3, he answered 17

correctly. The ratio

Number correct if034 85%,
total number -106-

student score.

Example, 3. In a certain election, 70% of a town's

registered voters actually voted. If

3,780 people voted, how many registered voters

are in the town?

We know that 70% is .70. We also know that if

there are x registered voters .70 :s is the
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number that voted. Thus .70 x = 3780 or

378.
x =

0By
division we find x = 5400. Check

by showing(.70) (5400) = 3780.

Example 4. A major league ball player has been at bat 82

times and collected 26 hits. What is his percent

of hits? The ratio 1111r of
i-slitas isa

26 13gr872- or . We find the percent equivalent from

13
the proportion by changing ,-- to

41
13 = x a decimal fraction to

loo

1300 = 41x or the nearest hundredth:

13
31.7 x .317

He has hit .32 = 32%

approximately 31.7%.

In baseball language this percent expressed to a

tenth of a percent (.1.7-) of
10-5

or --L-1000) is called
1 1

the player's "batting average". The player's

batting average in this problem is .317.

Example 5. What is 0 of 280?

Important! The answer is not 210. (Don't confuse

0 with 4.) 4% is equal to

3 . .1 '3

loo

Then 445 x 2 8 0 =
8

£0 = 2 . 1 0 .
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13.12 Exercises

1. Find the following:

(a) 1% of 500, 5% of 500, of 500, 12p of 500,

17 of 500, ..0% of 500, 10% of 500, 100% of 500.

(b) 1% of 150, 10%.of 150, % of 150, 13 % of 150.

(c) 1% of 24, 28% of 24, of of 24, L% of 24,

.4. of 24.

(d) 1% of 8000, .5% of 8000, 1.5% of 8000, 4.5% of

8000, .5 of 8000.

(e) 1% of 50, 100% of 50, 200% of 50, 240% of 50,

(f) 1% of 92, 100% of 92, 300% of 92, 350% of 92.

2. In a high school with 2600 students, 35% of the students

are freshmen. How many students are freshmen?

3. In the same high school, there are 390 seniors. What

per cent of the school's students are seniors?

4. Suppose the town of Elmwood has a population of 4000

and the town of Springfield has a population of 6000.

Complete the following statements.

(a) The ratio of Elmwood's population to

Springfield's population is

(b) Elmwood's population is of

Springfield's population.

(c) The ratio of Springfield's population to

Elmwood's population is
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(d) Springfield's population is % of

Elmwood's population.

5. Complete the statements in the following two columns

in the same way the first statement in each column has

been completed.

20 =
20

40. 20 is 50% of 40.-15

40 = * 20. 40 is of of 20.

20 =

_
25. 20 is j of 25.

25 =

__

20. 25 is _j of 20.

500 =

____

___ 400. 500 is __.% of 400.

400 = 500. 400 is j of 500.

8 = 80. 8 is _....% of 80.

80 =

....._

8. 80 is of of 8.

16 = 80. 16 is of of 80.

80 =

_
16. 80 is % of 16.

4.2 =

____

42. 4.2 is % of 42.

42 =

11
4.2. 42 is __% of 4.2.

1.8 =

_
___ 180. 1.8 is __% of 180.

180 = 1.8. 180 is j of 1.8.

6. In a basketball game, a high school team scored 80

points.

(a) If David scored 18 of these points, what per cent

of the team's points did he score?

(b) Bill made 27 of the team's points. How many

points did he score?
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(c) The number of points David scored is what per cent

of the number of points Bill scored?

7. In another game, David made 40% of the team's points. If

he made 22 points, how many points did the entire team

make?

8, (a) 22 is 40% of what number?

(b) 8o is 50% of what number?

(c) 12 is 35% of what number?

(d) 60 is 150% of what number?

(e) 7 is 1% of what number?

(f) 42 is of what number?

9. In a certain state, there is a 4% sales tax. How much

sales tax must be paid on purchases of the following

amounts?

(a) $40.00 (d) $3.25 (g) $3500.00

(b) $15.00 (e) $1.00 (h) $3499.00

(c) $12.50 (f) $10.00 (i) $9.99

10. Suppose a bank pays kit% interest per year on savings

deposits.

(a) How much interest should a deposit of $2000 earn in

one year?

(b) How much interest should a deposit of $2000 earn in

two years?

11. If the bank in Problem 10 pays interest every six months

it will pay only half as much, since 6 months is
1 of a
2

year. (It is the annual interest rate which is 0%.)
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(a) How much will $1000 earn for six months?

(b) How much will $2500 earn for six months?

(c) How much will $2000 earn for three months?

(Hint: 3 months is k- of a year)

From Exercises 10 and 11, we see that simple interest can

be computed from the formula

i= p.r.t,

where i is the interest, P is the amount of money deposited,

r is the rate of annual interest, and t is the time in

years.

12. Compute the interest for:

(a) $500 at 4% for 1 year,

(b) $500 at 4% for 6 months,

(c) $500 at 4% for 3 months,

(d) $1200 at 4*% for 1 year,

(e) $1200 at 4i% for 6 months,

(f) $1200 at 4*% for 3 months,

(g) $1500 at 5i% for 2 years,

(h) $1500 at 5% for 14 years,

(i) $750 at 4.2% for 1 year,

(,j) $750 at 4.2% for 6 months.

13. Mr. Smith has kept a deposit of $1500 in a bank for one

year, and the bank pays him $37.50 interest. What annual

rate of interest is the bank paying?

14. Complete the following sentences:

(a) 33 of 3900 is
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(b) 20 is ___% of 30.

(c) 30 is ___% of 20.

(d) 20 is 18% of

(e) 20 is 40% of

(f) 108 is 40% of

(g) 24% of 160 is .

(h) 2.75% of 160 is .

(i) 18 is 663 % of

(j) 163% of 66 is

(k) 30 is % of 36.

13.13 Presenting Data in Rectangular, Circle and Bar Gra hs

In Chapter 5, a study was made of collecting and

representing statistical data in tables and certain graphs. In

this section we will construct certain other graphs which give a

vivid pictorial summary of the data we wish to present. It

might take considerable study to glean the same summary from

a table presenting the data in numerical form. Thus popular

ways of presentation are the rectangular graph, circle graph,

and bar graph.

A seventh grade class made a survey of their junior

high school to find the proportional parts of the student

body that used various methods of travel to school.

When they had gathered the data they first recorded them

in a table as shown here.
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Methods of Transportation to School Used by Students.

Method Number of Students Percent of Students

Walk

Auto

Bus

Bicycle

Total

631

220

455

161

43

15

31

11

1467 100

The third column was obtained from the second column by com-

puting the percent each entry was of the total number of students.

To construct a rectangular Era n, the length of a rec-

tangle was divided into 100 parts (a good length is 10cm or

100mm). The rectangle was subdivided into rectangular sections

at 43, 58, and 89 parts from the left, and marked as shown.

Methods of Transportation to School Used

by Students in a Junior High School

Auto- Bi-
Walk mobile Bus cycle

43% 15% 31% 11%

1

43 58 89 100

To make a circle graph for the same data, it is nec-

essary to represent 360° es 100%. By proportion we find that

one percent,

x
STO- 100

or x = 3.6.

Hence 3.6 degrees represents one percent. The percent column

in the table above can now be changed into a degree column,
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by multiplying by 3.6.

Percent Degrees

43 154.8

15 54.0

31 111.6

11 39.6

Total 100 360.0

We draw a circle, and with the center of the protractor at the

center of the circle, we construct successive angles of

approximately 155 °, 54°, 111.5° and 39.5°.

The following graph results:

Methods of Transportation to School Used by
Students in a Junior High School

To construct a bar graph we draw bars, all the same width,

either horizontally or vertically, the length of each bar
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representing the number in each entry, or the percent in each

entry. The space between each bar should be the same width

as a bar. In the graph below (a horizontal bar graph), along

the horizontal axis a scale of 50 units was selected because

the greatest category is 43%. The scale on the axis shows 2%

for each division. The bars are then drawn parallel to this

scale of length given by the table. Each bar is labelled at

the left.

Method of Transportation to School Used by
Students in a Junior High School

Walk

Automobile

Bus

Bicycle

10 20 30 40

Percent of total (1467)
50

13.14 Exercises

1. (a) About how many times as many students came by bus as

by automobile?

(b) About how mery times as many students walked as came

by bicycle?

(c) What means of travel was used by the smallest number

of students? the largest number?

(d) Which type of graph was the most effective in presen-
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Ling least and greatest percentages? for

comparing the percentages?

2. (a) Obtain information from members of your class on their'

means of travel to school.

(b) Gather data from your class on: (1) how many go home

for lunch; (2) how maw bring their lunch; (3) how

many purchase their lunch in the school cafeteria;

and (4) how many are in none of the three preceding

groups (record this as "other").

3. Present each set of data tabulated in Exercise two by

means of graph. Use a rectangular, circle or bar

graph.

4. Complete the following table, following the procedure in

Section 13.13, and construct a rectangular, circle and

bar graph.

Distribution of Marital Status of Female Workers in a Factory

Status Frequency Percent Degrees

Single 180

Married 220

Divorced 25

Widowed 15_

Total 500

13.15 Translations and Groups

In preceding chapters we studied translations of a set

of points on a line onto itself; of a set of points on one of

two parallel lines onto a set of points on the other; of a set

of lattice points in a plane onto itself. In this section we 359
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extend translations so that they may have as a domain the set

of points in a plane whose coordinates, in a given coordinate

system, are rational numbers.

Consider the translation, call it t that maps 0(0,0) onto

, 1 1N
A k2-f, lv). What is the image of

B (0, 12) under t? Name it C.

What kind of figure is OACB? Why?

The coordinate rule of t is

%
(x,y) (x + y + Iv. Is t

a one-to-one onto mapping? Why? (21,11)

Does t have an inverse? Let us name

it t2. The -1 denotes an inverse

mapping, so t-1 is read "the inverse

of t" or simply "t inverse." In CI

what is the image of A? of C? of 0? The rule for tI

is: (x,y)--o-(x - 2221, y -

Do you think that every translation of the set of points

with rational coordinates in a plane has an inverse? If a

translation has rule (x,y)---0-(x + a, y + b) where x,y,a,b

are rational numbers, what is the rule for the inverse of this

translation?

Now consider translation t' that maps (x,y) onto

(x + 347, y - i). Under t', what is the image of A

1)? Is there a single translation that maps 0 onto this

image? What is its rule? Thus, there is a translation which

is the composite t'ot, and as you recall, we read it "t'

following t.';
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In particular, what is the composite of t with its inverse

t
-2

? It would seem that it is the identity translation.

In summary, if (x,y) -->(x + a, y + b),

then (x,y) t >(x - a, y - b).

If (x,y) ' >(x + c, y + d),

hen (x,y) ttc)t4. >(x + a + c, y + b + d),

1and (x,y)t-°t

You have probably suspected that the set of translations we have

been discussing, together with composition, have the properties

of a group. Indeed they do, and you are asked to investigate

this question further in the following set of exercises.

13.16 Exercises

Assume that all translations in the exercises have for

their domain (and range), the set of all points in a plane with

rational coordinates in a given coordinate system.

1. Is the composition of two translations an operation?

Why?

2. Let T represent the set of all translations and let "o"

denote composition of mappings. List the properties that

should be proved for (T,o) that will support the claim

that (T,o) is a group.

3. Prove that every translation has an inverse in (T,o).

4. Prove that (Tpo) contains an identity translation.
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5. Prove that (T,o) has the associative property.

6. Prove that (T,o) is a commutative group.

7. Let translation t map (x,y) onto (x 4, y -

Find the rule for each of the following:

(a) tot (c) tototot

(b) totot (d) If t is denoted t1, tot is denoted

t2, totot is denoted t3, and so on,

does the set (t1;t2,t2,t4...) with o

form a group? If it does not, ex-

plain in what respect it is

deficient.

8. Using the data in Exercise 7 find the rule for each of

the following:

(a) CI

(b) t-1°C1(denoted t2)

(c) t-i°t-1°t-1(denoted t3)

(d) Does the set (t-1,t-3,t-3,...) with o form a group?

9. Does the set (... t3, ..) with o form

a group, where i is the identity transformation? If

not, in what respect is it deficient?

*10. Show that all translations having rules of the form

(x,y) (x + pa, y + qb), where a anft b are fixed

rational numbers, and and q are integers, form a group

with the operation "o" (composition of mappings).(Difficult.)
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13.17 Applications of Translations

As you might expect, translations have been studied

because they are useful in solving certain types of problems. In

this section we examine two of these types, both found in science.

One problem introduces forces and the other velocities.

We first examine a problem involving forces.

Let P, in the diagram below, represent a billiard cue ball

which is about to be struck by two billiard cues at the same

time. We want to know how the combined effect may be achieved

with a single billiard cue.

Po

In considering the effect of each cue we must know both

the magnitude and the direction of the force which is applied to

the ball by the cue. We represent the forces (not the cues) in

the diagram by the line segments a and b, together with an arrow

at one end of each segment. The length of each segment rep-

resents the magnitude of the force. (In our diagram one inch

represents a magnitude of 5 pounds.) The line in which the

segment lies together with its arrow, indicates the direction

of the force. Thus, one force is represented by line segment

a directed, at P, as indicated. We denote this force by a.
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The other force, with direction and magnitude as indicated, is

represented by line segment b. We denote this force by b.

Since the length of a is one inch, a has a magnitude of 5 pounds.

Line segment b is 2 inches long so that the magnitude of b is

10 pounds.

We see, then, that a force is determined by a magnitude

and a direction. A translation is determined in the same way.

For this reason we might expect to be able to use translations

to solve our problem. Our expectations are realized, for

"adding" forces is done by composing translations.

Now let us "add" the two forces a and b described above.

To do this we think of P as a point and a and b as translations.

Then we see, in the diagram

at the right, that

P a
b

Q.

0 -;Hence P R.
-4 4.4
b o a

b o a is the translation that corresponds to the "sum"

of forces. That is, the effect of a and b together will be

to exert a force with a magnitude represented by PR in the line

of PR and in the direction from P to R. This force is called

the resultant of forces a and t. Going back to our original

problem, we see that to achieve the same effect with a single

cue the cue ball would have to be struck with a force of 11T

pounds. Also, the cue would be sighted along iel in the direction

from P to R.
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Question: Doesaob=boa? Why or why not?

The second application of translations is to problems involving

velocity. Our problem will then be to "add" velocities in the

same sense that we,"add" forces. We can reinterpret our problem

of "adding" forces a and b by thinking of them as velocities.

Then a can represent a speed of 5 miles per hour in the direction

indicated in the diagram, and b can represent a speed of 10

miles per hour in the direction indicated in the diagram. Here

again the lengths of a and b represent the magnitudes (speeds in

miles per hour) of the velocity, and the line of the segment, with

an arrow, represents the direction. Here we might be solving a

problem such as the following:

A toy boat is propelled by its engine with

velocity b. A wind is blowing with velocity

a. In what direction, and with what speed,

does the boat actually move? (That is, with

what velocity does the boat move?)

The answer is found in exactly the same manner as "adding"

forces. The answer for this problem then, is: the boat moves

at the rate of 11y miles per hour in the direction of "ff as

indicated by its arrow.

We end this section

with another example.

Suppose a boat actually
b

moves in the direction of

a (shown at the right)

with a speed of 20 miles
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per hour, but its

propeller and engine

operate to make it move

in the direction of b

(shown at right) with a

speed of 15 miles per

hour. The difference

is due to the wind. In

what direction is the wind

blowing and with what speed?

Note that a is 2 inches long

and b is 1-
1

inches long.
2

Then the scale in the drawing

is 1" = 10 mi.

To solve this problem

think of a and t as the

translations corresponding

to the velocities and x as the translation corresponding to the

b

velocity of the wind. Since a is the composite of b with x

we have: b o x = a.

We solve for x and find x = b o a. This guides us in solving

the problem. Study the diagram and be able to explain how

it was made. In looking at the diagram, start at P. How long

is segment x? What is the speed of the wind?
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13.18 Exercises

10 The propeller and engines of a ship are set to propel it

on an easterly course, at the speed of 20 miles per hour.

The wind is moving towards the north (coming from the

south) at the speed of 10 miles an hour. Make a diagram

of the actual course, i.e. the velocity of the ship. Using

ruler and protractor, find the actual speed and find what

angle the course makes with the line pointing to the north.

(Use the scale: 1 inch . 10 miles.)

Note: We neglect the force of the flow of the water, called

"drift."

2. Answer the same questions asked in Exercise 1 for each of

the following cases.

(a) Intended course of ship is northeast; speed is 15

miles per hour; the wind comes from the west at 30

miles per hour. (Use the scale: 1 inch = 10 miles.)

(b) Intended course is northwest; speed is 18 miles per

hour; the wind comes from the southwest at 24 miles

per hour. (Use the scale: 1 inch = 6 miles.)

(c) The ship's intended course is southeast; speed 15

miles per hour; the wind comes from the northwest,

at 5 miles per hour. (Do you need a diagram for this

problem?)

In Exercises 3 - 7 use the segments shown below to rep-
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resent forces. The scale we used to draw them is 1 inch = 10

pounds.

a

3. Suppose forces a and t are applied to an object. Use a

diagram to find the resultant and compute the magnitude

(number of pounds) of the resultant force.

4. Proceed as in Exercise 3 given:

(a) forces a and c are applied together.

(b) forces t and c are applied together.
.4 .4

(c) e,b, and c are applied together.

5. Suppose force -4a is applied and C is the resultant. Find

the force x that was applied together with a, and compute

its magnitude.

6. Suppose force b is applied and c is the resultant. Find

the force x that was applied together with t, and compute

its magnitude.

7. Suppose c is applied and a is the resultant. Find
-

the force x that was applied together with c and compute

its magnitude.

8. Suppose two forces are applied and the resultant leaves

the object in its original position. What must have been

true of the two forces? 368
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13.19 Summary

1. If x is any rational number, then Dx is a dilation which

maps each point into a point x times as far from the origin.

2. Decimal fractions may be used in finding sums, differences,

products, and quotients of rational numbers.

3. Two sets may be compared by means of a ratio. The ratio

of a number x to a number is the quotient y, also

written as x:y. (It is understood that y / 0.)

If 2 = r, then x = ry.

4. If two ratios, b .5 and 22
b2'

are related so that

11'1 = a2
b 102'

then the ratios are said to be in proportion. An equation

of the form 5 = 2.2 is called a proportion.
1 2b

a
5. The ratio

100
is also written as "4" and read "a percent."

Every ratio can be expressed in the form 1.1, where a and

b are integers, or as a decimal fraction, or as a percent.

Many mathematical problems occuring in everyday life are

expressed in the language of percents.

6. If T is the set of all translations of form (x,y)

(x + a, y + b), where a and b are rational numbers, and

if 0 is composition of translations, then (T,°) is a

commutative group.
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13.20 Review Exercises

1. (a) What is of 18?

(b) What is 15% of 200?

(c) What is .35 x 650?

2. If a 12% tax must be paid on $35001 how much tax must

be paid?

3. During a sale, a store reduces all prices by 20%. What

is the sale price of a television set which normally

sells for $220.00?

4. In a school, 35 of the 225 boys go out for basketball.

What percent of the boys in the school go out for basketball?

5. 4% of the girls in the school are cheerleaders, and there

are 8 girl cheerleaders. How many girls are there in the

school?

6. A bank pays interest at an annual rate of 4. How much

will $4000 earn during a 6-month period?

7. Compute the following:

(a) 8.875 + 44.327

(b) 102.54 - 87.39

(c) 21.8 - 39.3

(d) (2.3) x (4.3 x 7.5)
6 138

8. In a certain city there are 4200 Democrats and 3600

Republicans. What is the ratio of Democrats to Repub-

licans? (Express the answer as an irreducible fraction.)

Then fill in the following blanks so that a true state-

ment results:

For every Republicans, there are Democrats.

(e) 5.6 x 8.75

(f) iNg8
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9. In a student council, there are 24 members. With all

members voting, Jim won the presidency by a 3:1 vote.

How many voted for Jim?

10. Solve the following proportions:

(a) 5 .
x

-2(b)
7
- =

x
(c) 7 = (d) '-9 =

11. Write the coordinates of the image of each of the

following points under the dilation

3

A-
-1,
(53

33 B (34), C (2, 4), D (0,9),

2C

4

E (9,0), F (-1, 1).

12. Let t be the translation in Q X Q which has the following

rule:

(x,Y) (x 7 5
y - 2.)

(a) What is the rule for tot?

(b) What is the rule for t3?

(c) What is the rule for t-1 (the inverse of t)?

(d) What is the rule for ta?
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CHAPTER i4

ALGORITHMS AND THEIR GRAPHS

14.1 Planning a Mathematical Process

Many of you have seen the humorous sign

PLAN AHEA

The humor, of course, is in the fact that the painter did

not heed the advice he was giving to others. To avoid crowding

the letters on future signs, the novice sign painter could re-

quest that his supervisor provide detailed instructions for

painting the words PLAN AHEAD on a piece of cardboard of a

given size. The instructions probably would be something like

this:

Use a ruler to find the length of the board.

Count the number, n, of letters and blank spaces needed to

pri7At the message.

Divide the length of the board by the number of spaces

needed to find the length of each space.

Mark off n spaces on the board -- each of the required

length.

Paint the letters in the appropriate spaces.

If one blank space is to precede the "P," one is to be be-

tween the two words, and one is to follow the "D," what is the

number of letters and blanks to be for the sign? If the length

of the sign is to be 12 inches, how long will each space be?
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Are the instructions clear and complete? If not, what modifica-

tions should be made?

Lists of instructions such as those used by the sign painter

occur frequently. The instruction manuals that come with almost

any toy or machine, and the recipes your mother clips from news-

papers and magazines are examples of such lists. Instruction

lists occur also in mathematics. For example, you are familiar

with the following instructions for averaging a set of test

grades:

Add all grades in the list and obtain the sum S.

Count the number, n, of grades in the list.

Divide S by n to determine the average of the n grades.

A list of instructions or a recipe is useful only if the

process described finally comes to an end. Otherwise, no sign

would ever be finished, no dish prepared for the table and no

average recorded on your report card. In mathematics, a list of

instructions describing a process which eventually comes to an

end is called an algorithm or algorism after the Latin name of

the Arab mathematician Mohammed al Khowarizmi who collected many

algebraic recipes in a book entitled ilm al-jabr wa'l muqabelah

(c. 800) .

Algorithms occur in all areas and at every level of mathe-

metics. You already know and use a number of algorithms. The

algorithm for adding two two-digit numbers and the algorithm for

dividing one number by another are familiar to you. Algorithms

are especially useful in work with electronic computers. Although

computers can perform mathematical operations at high
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speeds, they must first receive a detailed sequence of instruc-

tion; that is, the computer must be given an algorithm.

Algorithms may be written out as in the preceding example,

recorded on magnetic tape, or represented in a variety of other

ways. One procedure for recording the sign painter's algorithm

would be to write the instructions on individual index cards.

If the cards are placed in a pocket or drawer and reassembled

at a later time, trouble may develop. Suppose the sign painter

reassembled the cards as in Figure 14.1.

Count the letters and blanks needed.

Paint the letters.

Measure the signboard.

Divide the length of the signboard

by the number of spaces needed.

Mark off the necessary number of

spaces on the signboard.

Figure 14.1

What sort of a sign might be produced if these instructions were

followed? Do you see that not only are the instructions impor-

tant, but their arrangement is important as well?

We can avoid this difficulty either by numbering the cards
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or by indicating with arrows the sequence in which the steps

are to be performed, as in Figure 14.2.

Count the letters and blanks needed.

41 Paint the letters.

Measure the signboard.

Divide the length of the signboard

by the number of spaces needed.

Mark off the necessary number of

spaces on the signboard.

Figure 14.2

The picture of the sign painter's algorithm with separate in-

structions recorded in boxes and the boxes joined by arrows is,

in a sense, a diagram or a graph of the algorithm. Graphs of

algorithms are called flow charts. Two things should be apparent

in every flow chart -- the instructions themselves, and the

"flow" or sequence in which they are to be performed.

Since flow charts are useful for recording algorithms, and

since algorithms are essential in machine computation, mathema-

ticians who prepare programs for electronic computers have

developed a standard form and language for the construction of

flow charts. Facts and equipment important for specific proces-
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ses are recorded in data boxes like this:

ruler, pencil,

cardboard,

paint, brush

These data boxes or cards are used to record the process input

-- the information or equipment necessary to carry out the pro-

cess. Is the card above an appropriate input for the sign

painter's flow chart?

Instructions to be carried out or operations to be per-

formed are recorded in operation boxes like these:

Measure the

signboard.

Divide the length of the
board by the number of
spaces necessary to de-
termine the length of
each blank and letter.

Information obtained by means of the process described in

the flow chart is recorded in output boxes like this:

[ Satisfactory sign.

'--......___....-

Note that each type of box has a characteristic shape.

Using these conventions, try to complete the flow chart

for the sign process in Figure 14.3.
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r
Pencil, ruler

----, cardboard,
paint, brush
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_H

Count
spaces
required

Paint the
letters

Figure 14.3

While both the content and sequence of the instruction

boxes are important, it is often possible to give instructions

in several ways, each producing the same result. Is there any

rearrangement of the instructions in the PLAN AHEAD flow chart

that still would produce an acceptable sign? It is possible

also to expand the instructions within one of the boxes, devel-

oping a flow chart within a flow chart. For instance, we could

replace the box which commands, "Count the number, n, of letters

and blanks needed to print the message," by the sequence of three

operation boxes shown in Figure 14.4.

Count the number of letters
needed for the message.

Count the number of blanks
needed for the message.

Find the sum, n, of the
numbers in the preceding
two boxes.

Figure 14.4
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What other such expansions can you suggest to make the directions

clearer?

The flow chart is a useful device for describing complicated

algorithms pictorially. It has primary applications in program-

ming for computers, but it is also of use in outlining a wide

range of step-by-step procedures. A few of the uses of flow

charts are illustrated in the following exercises.

14.2 Exercises

1. Try to construct a flow chart of the main steps describing

(a) now you got to school today;

(b) your daily schedule at school;

(c) how to draw a circle with compasses or a string and

pencil;

(d) how to find the average of two numbers;

(e) how to find the factors of a number;

(f) a game you play.

Does the order of the boxes affect the chart you have con-

structed?

If possible, show two orderin8.7 that produce the same result,

2. (a) Do the directions in your sign painter's flow chart

apply only to the PLAN AHEAD sign ?

(b) Is it possible to use the same chart to produce differ-

ent signs by use of an additional data box?

rMessage:
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If so, where should this data box 17? placed in the

chart?

(c) What would the message boxes be for painting

(1) CAUTION: RUTABAGAS

(2) U.N.C.L.E.

(3) (your name)

(d) What number of letterp and blanks is needed in each

sign suggested in (c)?

(e) If you have a signboard 24 inches long, how long will

each letter and blank be in each of the three signs?

3. Classify the following as input, output, or operation boxes:

( a)

( b)

(c)

(d)

Add. (e) [Skip school]

( f)

(A school]
skipper.

Applespples and =,

Oranges An hour
school
weeks.

after
for two

(2, 3, 7, 11. 2111

4. If possible, arrange the following cards in order to give a

flow chart that makes sense.

(a)

(b) (117771

(c) (Bald rGlove1

Shoot

Sew

Aim ('Basked Dcore

(Thread(
LDress

ET] (Cloth'

Catch Throw Hit

5. Try to write a flow chart for multiplying two fractions which

can be followed successfully by someone who doesn't know
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what a fraction is.

6. Write a flow chart for averaging two numbers.

7. Can you write directions for the process of opening a com-

bination lock? You might begin with

--4 Lock, combination. -------4
to the right.I

Turn 2 full turns

l4.3 Flow Charts of Branching Algorithms

In the preceding section you were introduced to flow charts

of simple algorithms. The flow charts consisted of input, out-

put, and operation boxes that were arranged in a definite order.

Often in flow charts of more complicated algorithms, you will

find a fourth kind of box. This new box is called a decision

box, and usually looks like this:

Yesi

Decision boxes contain questions. In flow charts of mathema-

tical processes, decision boxes usually ask whether two quanti-

ties are equal or whether a certain inequality holds between

them.

For example, the decision box

( Is a < b?

Yes
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asks whether the number a is less than b. The outcome of a

decision box is "yes" or "no." Often decision boxes are used

to create "forks" or branches in a flow chart. The chart may

indicate that one set of instructions is to be followed if the

answer is "yes," and a different set if the answer is "no."

As an example of a flow chart that includes a decision box,

consider the trial and error procedure in Figure 14.5 for

painting the PLAN AHEAD sign.

Paint, cardboard,
brush, etc.

IPaint the sign.

(Is the sign
acceptable?

Yes],

Display the
sign.

No

Figure 14.5

Discard the
unsatisfactory
sign.

Of course, there is no guarantee that the process ever will re-

sult in an acceptable sign; hence, the chart is not the flow

chart of an algorithm.

For an example of a bona fide algorithm, which includes a

decision box, take the usual method of rounding off a decimal to
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the nearest hundredth. To round off, say, .abcd, where a, b, cl

and d are digits, we consider only the thousandths digit c. If

c < 5, then .abed rounded to hundredths is simply .ab. If c >

5, then .abcd rounded to hundredths is .ab + .01. In flow chart

form this algorithm is displayed in Figure 14.6.

(abed, Is c e 5?

Ye

No

Figure 14.6: Rounding off a Decimal to
the Nearest Hundredth.

There are, of course, other more refined procedures for round-

ing off decimals. However, the one given above is used by most

students.

Algorithms with two or more branches occurred frequently

in previous chapters. The algorithm for deciding which of two

integers is the greater is an algorithm with several branches.

(See Figure 14.7.)

:(
Integers a and b.]

1

Eompute a + (-b)

Is a + (-b)
positive?

UL)' Figure 14.7: Determining if a > b, b > a, or a = b.
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Figure 14.8: Adding Two Integers.
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Similarly, the algorithm for computing the sum of two

integers is a multi-branch routine. (See Figure 14.8) While

the preceding flow charts may seem to you to be of little prac-

tical value, once the algorithms they represent have been

learned they can serve a useful purpose in checking a particular

computation or in locating an error in procedure. For example,

if in adding -8 and 36, a friend obtained the sum 44, you could

easily point out his error by referring to the flow chart

(Figure 14.8). With b = -8 and c = 36, the only output with

value 44 is Ibi + Icl. Working backwards from the output box

b + c = Ibl + we see the following:

Since c = 36 > 0, and since the output Ibi Id' is along the

"Yes" arrow, the error must have occurred in an earlier cell.

Again working backwards, we see:

( Is b > 0?

Yes

(Is c > 0?)

Since b = -8 < 0, the error very probably occurred here.
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Once the location and nature of the error are determined,

it is a relatively simple matter to repeat the routine avoiding

this same mistake.

14.4 Exercises

1. Which of the following might appear in a decision box?

(a) Is it raining?

(b) 3 + 2

(c) 3 + 2 = a

(d) It is raining.

(e) a > 0

(f) a + 5

2. Write a flow chart for computing the product of two integers.

3. Write a branching flow chart for finding the largest of a

set of three integers.

4. W-ite a flow chart for arranging three integers in increas-

ing order.

5. Write a flow chart for arranging three integers in increas-

ing order and removing duplicates, if any.

6. Write the flow chart of an algorithm for finding a single

heavy ball in a set of eight balls.

7. Use flow charts to locate the errors in the following com-

putations:

(a) (-8) + (-36) = 28.

(b) (8) + (-36) = 44.

(c) (-8) + (36) -28.

8. Write a flow chart similar to that in Figure 14.8 of an

algorithm for computing the difference b - c of two integers

b, c.
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14.5 Iterative Algorithms

Imagine now that the novice sign painter of Section 14.1

received an order for 5 identical PLAN AHEAD signs. He could,

if he chose, plan the entire job by preparing a flow chart simi-

lar to that of Figure 14.9.

Ruler, pencil, cardboard
paint, brush.

Measure the board.

Count the number, n, of
letters and blanks in
the sign.

Divide the length of the
board by the number of
spaces needed to find
the length of each space.

Mark off n spaces on the
board each of the required
length.

(Paint the letters in the
appropriate spaces.

Place the sign in the
drying rack.

IObtain a new piece of
cardboard.
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Mark off n spaces
board, each of
length.

on the
the required

---/
Paint the letters in the
appropriate spaces.

Place the sign in the
drying rack.

I
,Obtain a new piece of
cardboard.

1
Mark off n spaces on the
board, each of the required
length.

Paint the letters in the
appropriate spaces.

Place the sign in the
drying rack.

1
Obtain a new piece of
cardboard.

i
Mark off n spaces on the
board each of the required
length.

Paint the letters in the
appropriate spaces.

-1,
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Place the sign in the
drying rack.

Obtain a new piece of
cardboard.

Mark off n spaces
board each of
length.

on the
the required

----I
iPaint the letters in the
appropriate spaces.

1

Place the sign in the
drying rack.

Figure 14.9

While the chart in Figure 14.9 is not too bad for an order

of 5 signs, certainly a similar chart for an order of 50 signs

would be far too long. In the case of processes which are to be

repeated many times, it is convenient to refer back to that part

of the original chart that describes the repeated process. Thus,

to paint many signs, the painter could use the chart in Figure

14.10.

gliej, ipoe%ill, cardboard,

r
t

(Measure the board.
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Count the number, n, of
letters and blanks in
the sign.

1
Divide the length of the
board by the number of
spaces needed to find the
length of each space.

Mark off n spaces on the
board, each of the
required length.

Obtain a new
Paint the letters in the I piece of
appropriate spaces. cardboard.

Place the sign in the
drying rack.

Figure 14.10

Flow charts of this type are said to contain a loop.. The

processes they represent are called iterative or repeating pro-

cesses. Of course, we cannot be sure that the sign painting

process ever will stop. If left alone (and if the cardboard and

paint hold out), the painter could turn out signs indefinitely.

While many important mathematical routines theoretically

are non-terminating, we are concerned principally with algorithms;

that is, with routines which end. The sign painting process is,

in a sense, an algorithm since no matter how much cardboard and

paint the painter might accumulate, eventually he would run out

(or perhaps die of old age). Many mathematical routines also
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terminate for logistic reasons. Euclid's process for finding the

GCD (greatest common divisor) of two positive integers is a good

example. Remember that to determine the GCD of, say, a/ and a2,

with al > a2, first divide al by as to obtain remainder as. If

a3 = 0, then as is the GCD of al and as. If as / 0, divide as

by as to obtain remainder a4. If a.4 = 0, then a3 is the GCD.

If a4 / 0, divide as by a4 to obtain remainder a2, etc. The flow

chart for this routine is given in Figure 14.11.

al , a? in Z

> a, > 0.

[
Let n = 1; that is

a
n
=al and an+

1
= ap.

Divide a
n

by an+
1

to obtain remain-
der a

n+2.

( I s an+2 = 0? )

Yes

L-

GCD of al , a2 is
a
n+1*

-----....--...

Figure 14.11

Notice that like the chart for multiple sign production in

Figure 14.10, tke flow chart for Euclid's routine contains a
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loop. You may well ask whether Euclid's routine will terminate

eventually or will continue indefinitely. To see if Euclid's pro-

cess is an algorithm, that is, to see if the routine terminates,

consider the following example.

Example: Find the GCD of 64 and 42 using Euclid's routine.
1

First iteration 42x6

'n remainder

Second iteration

Third iteration

Fourth iteration

1
22r47

22
2U remainder

1
20 (fig

20
2 remainder

10
2120

20
0 remainder

The GCD is 2.

Since in each iteration the remainder is always less than the

divisor, and since the divisor in any given iteration after the

first is always the remainder in the preceding iteration, the

remainders get smaller and smaller with each iteration. Since

the process involves only non-negative integers, eventually a

remainder of zero must be obtained. Thus, no matter how large the

given numbers, Euclid's process will always produce their GCD in

a finite number of iterations.

It is possible also to transform a non-terminating process
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into an algorithm merely by agreeing to stop after a predeter-

mined number of interations. For example, if the painter were

asked to fill an order for exactly 50 PLAN AHEAD signs, he could

invent some sort of recording scheme or mechanism to tell him

when he had finished the fiftieth sign. In flow charts the

symbol

is commonly used for this purpose. The iteration symbol or

"diamond" records the number of times a cycle has been completed

and automatically channels the procese out of the loop at the

completion of the prescribed number of iterations. The flow chart

for producing 50 PLAN AHEAD signs would look something like

Figure 1)4.12.
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Ruler, pencil,
cardboard, paint,
brush.

Measure the board.

Count the number, n,
of letters and blanks
in the sign.

Divide the length of
the board by the number
of spaces needed, to
find the length of
each space.

Obtain a
new piece
of card-
board.

Mark off n spaces on
the board, each of the
required length.

Paint the i-th sign.,

> Deliver 50
completed
signs.

Figure 14.12

As a second example, consider the procedure for finding

the sum of 100 numbers al, a2, a3, a100. The flow chart

for this algorithm is shown in Figure 14.13.

We begin by letting the zero-th subtotal be 0, and then

enter the diamond. With i = 1, compute Si= S1-1 + a1 = So + a1

= 0 + a1 = a1, and re-enter the diamond. With i = 2, compute
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S2 = 2-1 a2 = al + a2, and re-enter the diamond.

,a2 , ,a3.0'0H Let So=0.

S1ocFa1 +a2+...+a100

-I--11 a
1.

°

Compute
subtotal

°J.
=S -+

Figure 14.3

This time i = 3, and we compute S3 = S3-1 a3 = al + a2 + a3,

and so on. After 100 iterations, Sloo will be al + a2 + +

al oo as required.

14.6 Exercises

1. Write a flow chart for computing n'.

2. Show that a diamond can always be replaced by a combination

of operation boxes and a decision box.

3. Write a flow chart with a diamond for finding the smallest

number among 50 integers.

4. Write a flow chart with a diamond for arranging 50 numbers

in increasing order.

14.7 Truncated Routines and Truncation Criteria

Some processes, while essentially non-terminating, can be

cut off or truncated to produce algorithms. The cut-off point

is determined by means of some truncation criterion. For example,

the sign painter's drying rack may hold a maximum of, say, 55
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sign:J. Thus, to fill an order of 50 signs, the painter could

stop painting when the rack was full. This would give him a safety

margin of 5 extra signs just in case some signs were smeared or

bent before delivery. In this case his cut-off criterion would

be "Is the rack full?" A flow chart for a truncated sign painting

routine is shown in Figure 14.14.

Ruler, pencil, cardboard,
paint, brush.

Measure the board.

Count the number, n, of
letters and blanks in
the sign.

Divide the length or the
board by the number of
spaces needed, to find the
length of each space.

Mark off n spaces on the
board, each of the
required length.

Paint the letters in the
appropriate spaces.

Place the sign in the
drying rack.

Is the rack full? No

Yes

[Deliver the order of signs.]

Figure 14.14

395
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piece of
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The truncation criterion is recorded in a decision box, since we

use it to decide whether or not to stop the rountine.

There are many examples of truncated routines in elementary

mathematics. The procedure for dividing one number by another,

and carrying out the quotient as a decimal, is a non-terminating

routine which we truncate according to some criterion such as

"to the nearest hundredth" or "to the nearest ten- thoustndth."

Another routine with a similar truncation criterion is use-

ful for finding a square root of a positive number. You know

that since 32 = 9, 3 is a sqtare root of 9; and since 62 . 36,

6 is a square root of 36. In general, if a, b > 0, then b is a

square root of a, written b = "-a, if and only if, b2 = a.

Some square roots, such as f9, ./-56 and .JT?Y are easy to

fiat:. Others are more difficult; for example 1 3.7641 = 3.71.

Still other square roots are, in a sense, impossible. For

example, there is no rational number whose square is 2; that io,

f2 is not a rational number. It is possible, however, to find

a rational number q such that q2 is as close as we wish to 2.

Sir Isaac Newton (1642-1727) devised a routine for obtaining

rational approximations to the square root of any positive number.

To find an approximation to the square root of, say, 2673, using

Newton's method, first estimate what an approximation to for"(3

might be. Let our first approximPtion be 60. (Sixty is not a

good guess, but we will use it anyhow to illustrate that Newton's

routine does not depend on the accuracy any approximation.)

If 60 were a good approximation to ./'2'60, divide 2673 by 60 and

obtain the quotient 44. Since 60 is much greater than 44, we
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conclude that 60 is an overestimate, and that a better approxima-

tion must lie' between 44 and 60. Now average 44 and 6o, and use

this average, 52, as the second approximation to ./2673. If 52 is

a good approximation to kilbn, then 522 2673, or 52 26

2673 by 52, we obtain the quotient 51.4. To get a third,

and still better approximation to %ran average the second

approximation, 52, and the quotient, 51.4, to obtain 51.7. Now

divide 2673 by 51.7 and obtain 51.7. If an approximation to

%/`I' were desired "correct to the nearest tenth" then this is

the cut-off point. (See Section 14.8, Exercise 6.) The trunca-

tion criterion could have been "Is the difference between the

estimate and the quotient less than one-tenth?" The third estimate

is 51.7 and the third quotient is 51.7; hence the criterion is

satisfied, and the routine stops.

A flow chart for Newton's routine is shown in Figure 14.15.

While the flow chart in Figure 14.15 will suffice for your

own uses it is probably too abbreviated to be useful with a computer,

ra; a in

I
1

Iftsf
::titIlilte.

Divide a by esti-
mate to obtain
quotient.

Is the elh717;77-\
between the esti-
mate and the quo-
tient less than
one-tenth?

Yes 397

Average esti-
mate and quo-
tient to obtain
new estimate.
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Figure 14.15

Average estimate and
quotient to obtain
new estimate

lacks the detail necessary for the computer, unless the computer

has already been taught to average; that is, unless a routine for

averaging has already been stored in the computer. Fortunately,

the routine of Section 14.2, Exercise 6 is just what is needed.

To illustrate that; this prior rountine is to be used here as a

subroutine, we show in Figure 14.16 an altered portion of the

routine in Figure 14.15.

Divide a by
estimate to
obtain quotient.

Is the difference
between the esti- No
mate and the quo-
tient less than
one-tenth?

Yes

Subroutine of
Section 14.2,
Exercise 6 to
find new esti-
mate.

Figure 14.16
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Similarly, we replace the operation box

IDivide a by estimate to
obtain quotient.

and the decision box

(
Is the difference between
the estimate and quotient
less than one-tenth? /

by appropriate subroutines, and obtain the flow chart in Figure

14.17. I a, e in Z1

Let e be first
estimate.

Subroutine of Section 14.8
Exercise 3 with a as divi-
dend and the estimate as
divisor to get quotient.

Subroutine of Section 14.4
Exercise 8 for the diffe-
rence d of the estimate
and quotient.

( Is de---/
Yes

Subroutine of
Section 14.2,
Exercise 6, to
average estimate
and quotient to
get new estimate.

Figure 14.17 399
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The flow chart in Figure 14.17 is satisfactory, not only for our

own paper-and-pencil use, but also for the use by another computer,

either human or electronic, capable of performing the routines

of this chapter.

14.8 Exercises

1. Write a flow chart for averaging 50 integers which has the

chart of Section 14.3 (for adding two integers) as a sub-

routine.

2. Write a flow chart for finding the GCD of three positive

integers with Euclid's algorithm as a subroutine.

3. Write a flow chart for dividing one integer by another "to

the nearest tenth." Explain why the truncation criterion is

necessary here.

4. Imagine that a grasshopper is 1 unit from a grain of wheat.

On his first jump he lands 1 unit from the grain, on his

1second jump he lands g unit from the wheat. In general, on

his n-th jump he lands (l)n units from the wheat. Write a111
flow chart for summing the terms of the sequence, 2, 4, 8, rs,

1
st, ..., and state a suitable truncation criterion.

5. Given positive integers al and a2 what does the following

routine do?

ra; a2 E Z, al a2 > 0.

Use Euclid's algorithm
to obtain the GCD of al,a2.
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!Compute ai .8.2.
I

I
!Divide ai a2 by GCD of al ,a2 . 1

1

6. Let e be an approximation to .ra obtained by Newton's method.

Use the inequality e < Ifa + el to show that if I: - el <

0,, then kra - el < rn.
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Algorithm, 3b7
Angle, 148, 164

straight, 151
zero, 151
acute, 1b5
obtuse, 165
right, 165
bisector, 165

Anti - symmetric relation, 57
Axiom, 190

Betweeness, 130, 168

Cartesian graph, 36
Cartesian product, 29, 32
Complement, 23
Composite numbers, 209
Coordinates, 12b

rectangular, 145

Data boxes, 370
Decimal

fraction, 286
infinite repeating, 296
terminating, 296

Decision box, 374
Degree, 155
Dilation, 310
Disjoint sets, 23
Divisibility, 19b
Division algorithm, 203

Empty set, 4
Endpoint, 81
Equivalence class, 60
Equivalence relation, 51
Euclid's algorithm, 228

Factor, 151, 212
Fermat's little theorem, 231
Flow charts 369
Fraction, 211.9

irreducible, 250

Graph, 37, 349
rectangular, 350
circle, 350
bar, 351
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Group, 355

Half line, 116
Halfplane, 120
Hexagon, 183

Intersection, 22
Irreflexive, 56
Isometry, 72, 132
Isosceles triangle, 169
Iterative process, 383

Least common denominator, 271,
Line Separation Principle, 116

Midpoint, 127

Nested interval, 294
Null set, 4

Operation boxes, 370
Order property

of the rational numbers, 280
Out-put boxes, 370

Parallel lines, 95_
Partial ordering, 64
Partition, 210
Pentagon, 182
Percent, 337
Perfect numbers, 219
Perpendicular, 84, 141
Plane Separation Principle, 119
Prime numbers, 208
Proof by cases, 205
Proportion, 326

quadrant, 122

Ratio, 325
Rational number, 249
Ray, 81, 116

interior, 150
Reciprocal, 238, 261
Reflection

in a line, 69, 168
in a point, 92, 172

Reflexive property 45
Relation, 33, 35, 39



Replacement assumption, 196
Resultant, 358
Rotation, 106

Segment, 82
Set, 1
Shrinkers, 313
Sieve of Eratosthenes, 219
Similar triangles, 337
Slope, 333
Stretchers, 313
Subroutine, 372
Subset, 6

proper, 8
Symmetric difference, _28
Symmetric property, 4b
Symmetry

in a line, 72
in a point, 92
rotational, 107

Theorem, 190
Transitive property, 48
Translation, 101, 135, 175

353, 357
Triangle in-equality property,

131
Triangle angle sum property,

179
Truncation criteria, 388

Union, 21
Unique factorization property,

215
Universal set, 11

Venn diagram, 12
Vertex, 150, 169
Vertical angles, 158
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